
pyTrading: A Framework for the Creation and Analysis of
Automated Trading Strategies

Mark Hamilton mark.hamilton@yale.edu

Yale University, New Haven, CT 06520 USA

Abstract

pyTrading is a Python package designed to
aid in the creation and analysis of automated
stock trading strategies. pyTrading has port-
folio classes to aid financial management as
well as strategy classes that can automat-
ically manage your finances. The package
also contains novel additions to the popu-
lar Python machine learning package scikit-
learn (Pedregosa et al., 2011). Through this
work, I have created a class that transforms
any scikit-learn regressor into a time-series
regressor or a sequence to sequence regressor.
This substantially generalizes linear dynam-
ical systems auto-regression to a large class
of nonlinear models already implemented in
scikit-learn. This time-series regression tech-
nique was used in conjunction with a strategy
object to yield a strategy that substantially
outperforms the average ”Buy and Hold”
strategy.

1. Overview

Through this project I have created an testing and
analysis framework for stock investment strategies.
This framework focuses on modularity and code reuse.
Each piece is designed to serve a well defined purpose,
and maximize extensibility and flexibility. This work
is designed with developers in mind, and much of its
value comes from its interface and straightforward way
to add more strategies. The project contains Portfo-
lio, Strategy, and TimeSeriesRegressor classes for rea-
soning about the stock market and portfolio manage-
ment. The pyTrading framework can be found at:
https://github.com/mhamilton723/pyTrading

Proceedings of the 30 th International Conference on Ma-
chine Learning, Atlanta, Georgia, USA, 2013. JMLR:
W&CP volume 28. Copyright 2013 by the author(s).

1.1. Portfolio Class

The portfolio class keeps track of all transactions,
and has parameters for percent and flat rate com-
mission. The portfolio exposes several member func-
tions for buying and selling tickers at a listed price,
and abstracts away commission calculations and safety
checks. The portfolio also contains several utilities for
calculating prices, checking if tickers are owned, and
adding and subtracting capital from the balance.

1.2. Strategy Class

The strategy class consists of a general agent based
framework for managing portfolios. A strategy ’runs’
on an iterator of stock data, each day it will update
the day’s prices and its internal memory state, and
then act on the data it observed by choosing to buy
or sell stocks that day. This simulates a real world
trading environment. Strategy objects interface with
underlying portfolio objects which are defined as mem-
bers of each strategy object. Class extension maxi-
mizes code re-use and makes defining strategies flex-
ible and intuitive. Each strategy inherits two main
functions from the ABC. The first function will is
called ”observe datum”, which reads the next value of
stock data iterator and updates the strategy’s internal
memory state. The second is called ”act” and uses
the strategy’s internal state to decide whether to buy
or sell stocks. Many strategies can be easily encoded
in this framework. Already, pyTrading has weighted,
multi-stock versions of buy and hold and momentum
strategies.

1.3. Informed Buy and Hold Strategies

In addition to the buy and hold, and momentum
strategies, pyTrading has a general class of strategies
called informed buy and hold strategies. These strate-
gies wait for a period of time to gather data before
analyzing it to choose a portfolio to buy and hold.
Currently, pyTrading has two main classes which in-
herit from this base class: BestChangeBuyAndHold-

https://github.com/mhamilton723/pyTrading


pyTrading: A Framework for Creating and Analyzing Automated trading Strategies

Strategy and TSEBuyAndHoldStrategy. The former
chooses top stocks based on which stocks had the high-
est change in the waiting period. The latter fits a time
series estimator to the system of stocks (I used the
s&p500 stocks, but this is not hard-coded) and then
forecasts the prices into the future and picks the top
k results from the forecast. Each of these strategies
have flags to weight the resulting portfolio uniformly,
proportional to the change, or proportional to the log
of the change (for positive changes). The time series
estimator strategy is completely general in the sense
that it can use any time series estimator, linear or oth-
erwise. Because of this, the TSEBuyAndHoldStrategy
parametrizes a space of strategies as large as the space
of sci-kit learn regressor object. In tests, this strategy
significantly outperforms the standard buy and hold
strategy. The strategy is also interpretable if its in-
ternal predictor has an interpretable set of parameters
such as the lasso, decision tree, or linear regression.

1.4. Utilities

pyTrading also had several utilities for the automatic
processing of time series data. More specifically,
’pyTrading.utils’ has methods for splitting datasets,
and creating cross validation sets for statistically ro-
bust backtesting (time series cv and cascade cv). I
also have created a python decorator that intelli-
gently caches intensive computations, and will auto-
matically update the cache if the calling parameters
have changed. This has served very useful for decreas-
ing redundant calculations and exponentially speeding
development time.

1.5. A Strategy Independent Back-Testing
Function

pyTrading.utls contains a backtesting function that
is strategy independent. pyTrading uses the unified
strategy interface discussed in 1.2 to define backtesting
functions at a high level of abstraction. More broadly,
this allows one to create other testing functions com-
patible with any type of strategy as I do in the ipython
notebooks. This allows for a powerful strategy com-
parison platform with very intuitive and simple inter-
face.

2. The Time Series Estimator (TSE)

In addition to creating a automated trading strategy
platform, I have added a novel type of estimator to the
popular machine learning package sci-kit learn. This
estimator transforms any sci-kit learn regressor into
a sequence to sequence auto-regressor or time series
auto-regressor. This greatly extends the class of prob-

lems solvable by sci-kit learn. I am currently trying to
integrate this code into the next release of sci-kit learn.
In the meantime this can be found within pyTrading or
as a standalone repository at https://github.com/

mhamilton723/TimeSeriesRegressor

2.1. Theory

The time series estimator generalizes auto-regressive
models where one is looking for a function that maps
sequences to sequences. Consider the sequences of vec-
tors, xi, yi where :

xi ∈ Rm, yi ∈ Rn, i ∈ [1...I], and n,m, I ∈ N+

To learn a sequence to sequence mapping, one is look-
ing to find a function: f ∈ F ⊂ Rm×w → Rn

such that:

f = arg min
g∈F

∑I
i=w+1 loss(g(xi−w, xi−w+1, ..., xi−1), yi)

where usually:

loss(a, b) is the mean squared error.

To model linear dynamical systems, the function space
F is taken to be the space of m× n matrices. In gen-
eral however, F can be any nonlinear function space.
Hence the time series regression problem can be sim-
plified to the classical regression problem on an altered
domain. Namely Rm×w where wis the number of steps
to look back in time instead of Rm.

2.2. Integration with scikit-learn

The TSE is designed to integrate seamlessly with the
all estimators and functions defined in scikit-learn.
Any estimator that maps vectors to vectors can be
used as an internal or ’base model’ for the TSE. Fur-
thermore, even if an sci-kit learn estimator can only
map vectors to numbers, this can be transformed into
a m-vector to n-vector mapping by creating n m-vector
to scalar maps and concatenating their results. This
feature can be accessed by using the ”parallel models”
flag in the TSE constructor.

The TSE can be used within a pipeline as a final re-
gressor object. This allows the TSE to be composed
with other transformers, for instance a scaler, PCA,
or Auto-Encoder. For stock market regression, one
could use the canonical scalers, which convert prices to
log(prices) or convert prices to percent changes from
the previous day. Pipelines can also be used within
a TSE to improve the sequence to sequence mapper.
For example, one could use a PCA or Auto-Encoder
to reduce the dimensionality of the data, effectively
transforming the high-dimensional space of 500+ stock

https://github.com/mhamilton723/TimeSeriesRegressor
https://github.com/mhamilton723/TimeSeriesRegressor


pyTrading: A Framework for Creating and Analyzing Automated trading Strategies

prices to a lower-dimensional space that captures the
most salient features of the market.

Furthermore, TSEs are compatible with all sklearn
hyper-parameter search methods including Grid-
SearchCV and GaussianProcessCV (still in develop-
ment but will be added soon). One can tune the pa-
rameters of the TSE, such as the number of previous
data points to use ’n prev’ and the model used in the
regression ’base estimator’. Additionally, one can tune
the parameters of the base estimator itself because any
excess parameters supplied to the TSE are passed di-
rectly into the base estimator.

However, one must take caution when using cross vali-
dated search mechanisms. Traditional K-fold or Leave-
one-out CV techniques randomly sample the dataset,
or break the data into folds which are then recombined
to form multiple training and testing sets. This ran-
dom sampling assumes i.i.d data and destroys it’s tem-
poral ordering, making any results found on the cross
validation sets not applicable to the original prob-
lem. Luckily, the TimeSeriesEstimator module has
several time-series cross validation techniques to over-
come this issue. The function ’time series cv’ splits
the data up into non-overlapping folds, leaving the fi-
nal %’test fraction’ of the dataset for validation. ’cas-
cade cv’ generates overlapping folds with the final test
fraction of the dataset for validation, this option is
optimal for small datasets or large numbers of folds.

3. Usage

Please see the pyTrading Demo ipython note-
book at https://github.com/mhamilton723/

pyTrading/blob/master/PyTrading%20Demo.ipynb

for an interactive demo of the portfolio and strat-
egy objects. Please see the TimeSeriesEstimator
Demo ipython notebook at https://github.com/

mhamilton723/pyTrading/blob/master/Time%

20Series%20Estimator%20Demo.ipynb for a tutorial
of basic usage, grid search usage, prediction, forecast-
ing ahead, statistically jittered forecasting as in figure
1, and other functionality.

4. Results

Please see the pyTrading Demo ipython notebook
mentioned in 4 at for an interactive demo of the
strategies’ returns and for a detailed quantification of
their effectiveness. Please see the TimeSeriesEstima-
tor Demo ipython notebook for several results on their
effectiveness at predicting the stock market as in figure
2, the quantitative optimization of several parameters,
and statistically justified model selection. Select plots

Figure 1. 200 statistically jittered forecasts of Alcoa (’AA’)
made with a linear time series regressor. This feature al-
lows one to visualize the approximate uncertainty of the
forecast

are shown here for convenience.

4.1. Explaining the Decision

As one can see in figures 2 and 3, the linear TSE signif-
icantly outperforms the mean buy and hold strategy
yielding a return of ≈ 50% over the course of 260 days.
This model was only trained for 100 days of data and
was not the best performing forecaster on the dataset,
but was shown here as fast running proof of concept.
It can also justify its decisions by comparing its results
to the space of other buy and hold strategies as shown
in figure 3. Furthermore, a more statistically robust
study of performance of the time series estimator was
undertaken in 4. It found that the TSE suggests an
above average performing stock on average. This de-
cision system can also actively justify its decisions by
using the forecast function to see where the regressor
predicts the market will be arbitrarily far ahead. It
can then and reporting the predicted changes in price.
The use of jittered forecasts as in figure 1 can yield
approximate measures of risk. These measures of risk
can easily be incorporated into a strategy in the form
of a discounting factor or expected value calculation.
The use of the back-test function helps tie this belief
with reality as one can actively observe each strategy’s
performance in a real world situation.

5. Currently under development

In addition to the software presented above there are
several new developments that will be added to the
software package as soon as I complete them.

https://github.com/mhamilton723/pyTrading/blob/master/PyTrading%20Demo.ipynb
https://github.com/mhamilton723/pyTrading/blob/master/PyTrading%20Demo.ipynb
https://github.com/mhamilton723/pyTrading/blob/master/Time%20Series%20Estimator%20Demo.ipynb
https://github.com/mhamilton723/pyTrading/blob/master/Time%20Series%20Estimator%20Demo.ipynb
https://github.com/mhamilton723/pyTrading/blob/master/Time%20Series%20Estimator%20Demo.ipynb


pyTrading: A Framework for Creating and Analyzing Automated trading Strategies

Figure 2. The fraction of buy and hold strategies beaten
by a linear (red) and decision tree (green) time series re-
gression informed buy and hold strategy. K represents the
number of stocks chosen for the portfolio

Figure 3. Boxplots of the returns of buy and hold strategies
sampled uniformly from the space of possible strategies
(the space of k-ticker subsets of s&p500 stocks). Returns
made by a linear TSE informed buy and hold strategy are
shown in red, decision tree results shown in green

Figure 4. An analysis of 20 different datasets taken from
2009-1-1 to 2015-11-1. The metric on the y axis captures
the ability for the TSE to predict stocks that do better
than the average stock.

5.1. GPU Enabled Recurrent Neural Nets in
Theano and Keras

In the pyTrading repository I have included several
scripts for creating and running GPU enabled recur-
rent neural networks on the s&p500 data (see the rnn
folder). These nonlinear function estimators have per-
formed very well in language learning tasks and in-
dustrial time series analysis. Furthermore, these esti-
mators are universal which means that they can ap-
proximate any computable function or program given
enough data and neurons. I have created a very mod-
ular python script which creates and runs many dif-
ferent RNN architectures including SimpleRNN, Long
Short Term Memory Networks (LSTMs) (Gers et al.,
2000) and Grated Recurrent Units (GRUs). Almost
every parameter of the nets can be controlled via the
command line and all computationally intensive com-
ponents can be cached. It’s command line interface al-
lows for running many parallel jobs on clusters. I also
have created several scripts for automatically submit-
ting hundreds of parallel jobs on Yale’s omega cluster.
The script can be modified for other clusters that use
PBS or Torch. The neural nets are built using Keras,
which is built on Theano, which is a language for auto-
matic differentiation and deep learning research. This
framework automatically compiles and simplifies mod-
els making them easy to scale to multiple CPUs or a
GPUs. The reason these nets are not currently in the
framework is because they do not yet forecast data
well. I would like to add overshooting to these nets to
improve their forecasting.(Zimmermann et al., 2012)
I would also like to implement the Historically Con-
sistent Neural Network (HCNN) in theano. This ar-



pyTrading: A Framework for Creating and Analyzing Automated trading Strategies

chitecture is specifically designed to model time series
regression of a dynamical system like the stock market.
(Zimmermann et al., 2012)

6. Code

All code for pyTrading can be found in the git reposi-
tory:

https://github.com/mhamilton723/pyTrading

The above link also includes the TimeSeriesEstimator,
for a standalone version of the TSE please see:

https://github.com/mhamilton723/

TimeSeriesRegressor

7. Acknowledgements

This project would not have been accomplished with-
out Professor Sahand Negabahn and Catherine Hol-
land who both contributed helpful and guiding discus-
sions. Thanks also to Stephen Slade, Ronghui Gu, and
Kun Ren for approving and reviewing this project.

References

Gers, Felix A, Schmidhuber, Jürgen, and Cummins,
Fred. Learning to forget: Continual prediction with
lstm. Neural computation, 12(10):2451–2471, 2000.

Pedregosa, Fabian, Varoquaux, Gaël, Gramfort,
Alexandre, Michel, Vincent, Thirion, Bertrand,
Grisel, Olivier, Blondel, Mathieu, Prettenhofer, Pe-
ter, Weiss, Ron, Dubourg, Vincent, et al. Scikit-
learn: Machine learning in python. The Journal of
Machine Learning Research, 12:2825–2830, 2011.

Zimmermann, Hans-Georg, Tietz, Christoph, and
Grothmann, Ralph. Forecasting with recurrent neu-
ral networks: 12 tricks. In Neural Networks: Tricks
of the Trade, pp. 687–707. Springer, 2012.

https://github.com/mhamilton723/pyTrading
https://github.com/mhamilton723/TimeSeriesRegressor
https://github.com/mhamilton723/TimeSeriesRegressor

