
Journal of Machine Learning Research 1 (2015) 1-48 Submitted n/a; Published n/a

A General Tool for Learning-Algorithm Optimization and
Comparison

Mark Hamilton mark.hamilton@yale.edu

Yale University

New Haven, CT

Editor:

Abstract

I have utilized the scikit-learn (sklearn) and pybrain python libraries to create a mod-
ular learning-algorithm comparison software. This software consists of my own python
module and fitting programs for pre-processing and regressing data of arbitrary size and
dimension. I have also created a sklearn-integrated neural-network regression class using
the machinery from pybrain. This addition was needed due to sklearn’s lack of a general
neural-network regression algorithm that supports deep networks. Furthermore, I created
an optimization program that performs k-fold cross validation over a regression pipeline
that includes imputing, scaling, dimensionality reduction, and fitting with multiple regres-
sion algorithms. This program is modular and easily supports the addition of more fitting
algorithms and optimization parameter spaces. Currently, this program optimizes over ker-
nel ridge, support vector, random forest, gradient boosting, and neural network regression
algorithms. I have applied this software to astronomical data to calculate photometric red-
shifts for Active Galactic Nuclei (AGN) with only 250 data points. Due to high variability
and lack of research, these objects pose one of the greatest challenges in the photometric
redshift fitting community. My software yields improved fitting accuracy when compared
to other photometric-redshift algorithms such as Lephare.

1. Motivation

When confronted with a challenging data analysis problem it is often difficult to know
where to begin, especially if little is known about the structure and nature of the data. If
the dataset under investigation is small, obtaining an effective model of the data can be a
significant challenge. Thankfully, many general regression algorithms have been created to
fit data from arbitrary function classes. However, many of these algorithms have a large
and non-convex meta-parameter space that is not well understood. Through the course of
this project, I have created software that is general enough to handle many different types
of regression problems through the lens of model search and selection. This software is
designed to be used as an off the shelf model selector that can work on arbitrary datasets.

2. Astrophysics Background

For many decades, it has been known that our understanding of physics is woefully incom-
plete. Scientists have observed massive effects called ”Dark energy” and ”Dark matter”
which defy all standard explanations. Consequently, we have created several new theories

c©2015 Mark Hamilton.



Hamilton

that offer tantalizing unifications and explanations, but have not been validated by any
experimental evidence. Today, cosmologists are interested in studying the universe at the
largest of scales to glean clues about possible new models of our universe. One of the many
frontiers currently under research involves the distribution of galaxies as a function of space
and time. By better understanding this distribution, we can get better estimates of our
universes fundamental parameters and can uncover clues from a time when the structure of
our universe was very different from that of today.

Recent observations have showed that almost all galaxies contain a large super-massive
black hole at their center, which holds stars in a galactic orbit. At certain stages of a
galaxy’s life, a large portion of galactic material will spiral into the black hole creating a
significant amount of friction, heat, and light. We observe these high-energy objects as
incredibly intense points of light called quasars, blazars, or more generally, Active Galactic
Nuclei (AGN). Recently, researchers have discovered that many of these objects might
be obscured by large toroidal dust clouds of debris that block the bright light emanating
from the AGN.[2] Consequently, this has sparked a large movement to measure the true
distribution of the AGN in space and time, which requires knowing their distance from earth.
This is calculated by finding a bright peak in the spectrum of a galaxy called an emission
line and determining its redshift. Physically speaking, these emission lines come from the
quantized emission of light from electron transitions between orbital states in atoms such
as helium. A redshift refers to how much the light waves have been stretched and elongated
by the expanding universe. Larger distances from earth entail longer light travel times,
which implies more stretching by the expanding universe. Emission lines occur at very
specific wavelengths, so observing the magnitude of the shift can give incredibly accurate
measurements of galaxy distance.

For years, researchers have been patiently collecting data from several observatories and
aggregating the results in large databases. However, taking full spectrum images of all
of the objects observed is costly, time consuming, and unfeasible on a large scale. Con-
sequently, most datasets only have spectra for less than 10% of the observations.[6] The
remainder of the observations contain only a few (3-15) light intensity measurements at
specific wavelength bands. Because of this limitation, conventional redshift calculations
that rely on a well-resolved characteristic peak fail, and approximation methods must be
used. This problem spawned a new technique called ”photometric redshift” (photz) fit-
ting where redshifts are estimated from the few intensity bands available. Conventional
approaches involve fitting a template galactic spectrum to each galaxy’s light intensity
measurements. This template usually depends on a few parameters such as scale, redshift,
and type of galaxy. The parameters are then tuned using maximum likelihood estimation,
and the corresponding redshift estimate is returned. These methods perform fairly well on
normal galaxies with several (≈ 30) wavelength bands. However, these methods are inaccu-
rate and imprecise when applied to AGN, and require specific templates and highly tuned
fitting routines.[1] This past summer, I searched the parameter space for weeks to find a
fitting routine that could accurately predict redshifts for these types of galaxies. However,
the search was unsuccessful as I could not improve beyond a slight correlation between
predicted and the actual or ”spectroscopic redshift” (specz) obtained from the full spectra,
as can be seen in Figure 2. Furthermore, these objects are rare and need to be observed by
satellite x-ray observatories, I was limited to a dataset of size ≈ 250 objects, many of which

2



A General Tool for Learning-Algorithm Optimization and Comparison

had missing entries. This motivated me to pursue an analysis method that could effectively
handle small sample sizes, noisy data, and missing values.

3. Data

The data used in this project has been compiled from a list of x-ray selected AGN from
the Chandra, XMM, and Stripe-82 x-ray observatories. The data is then cross-matched
using a maximum likelihood estimator based on position and brightness to objects in the
Sloan Digital Sky Survey (SDSS), GALEX, UKIDSS, and WISE astronomical surveys. This
results in a list of objects selected by x-ray observation that have magnitude (brightness)
measurements in one or more of the astronomical surveys. Each survey has its own set of
wavelength bands for a maximum total of 15 magnitude measurements. These magnitudes
are acquired by taking the image from the telescope, and ”extracting” the brightness by
integrating a small circular region around the galaxy. There are several different competing
ways to perform this extraction, each offering advantages in different parameter regimes.
It was not clear a priori which magnitude type would yield accurate results in a fitting
program. As a result, a brute force check on all magnitude type combinations was performed
with cross validation to determine the most effective combination for the Lephare redshift
fitting algorithm. Once the proper magnitude types have been selected and queried, the
data are converted to the same unit scale (AB magnitudes) and several transformations are
applied from the Schlegel dust maps to correct for galactic dust reddening from the milky-
way.[4] This ensures that Lephare can properly fit the galaxy templates to the data without
having to add a dust correction parameter, which adds unnecessary degrees of freedom to
the problem. Furthermore, AGN magnitude can vary drastically on timescales as small
as months, and each survey (SDSS, Galex etc) has collected data at different times of the
year.[5] To correct for this variability, the data-mining method pulls the observation that is
temporally closest to the SDSS measurement. Throughout the course of this work I used
only the objects with observations in all four surveys.

4. Fitting Process

On the large scale, the fitting process contains several modular units that each perform a
separate computationally intensive task. This modularity minimizes the need to re-compute
optimized parameters. The first unit performs a grid search optimization over each algo-
rithm under investigation. The results of this optimization are ”pickled” (Python’s version
of saving any object to a file) into a file and then loaded by the two result plotters. The
first performs a bootstrapped plot using the best parameter results from the optimization.
This bootstrapping helps to characterize the variability of the algorithm despite a lack of
data. The second feeds the best results into a bagging regressor with 30 objects to decrease
variability. This computation is usually lengthy, so the results of this are pickled into a file
for re-plotting at any time.

The fitting process has been implemented almost entirely in the sklearn and pybrain
packages of python. The first step involves reading a parameter file called ′′ml param.py′′

which includes the names of various input and output files and several metaparameters.
This keeps the codes short and is intended to be as general as possible for scripting and

3



Hamilton

chaining these codes together. The second step in the process involves parsing the data
file and extracting the relevant columns, which are stored in the ′′features.txt′′ file. This
allows for easy updating of the input data and features used in the fitting process. All three
main codes then standardize the data by replacing various missing value placeholders to
-99. Next, the data is converted to numpy arrays for processing with sklearn.

The code is based around the sklearn pipeline object, which is a general method for
chaining together preprocessing, dimensionality reduction, and regression procedures into
a single object which can be manipulated. The use of this pipe object adds conceptual
simplicity, and allows for grid searches over the parameters of the entire process.

The first object in the pipeline is an imputer, which replaces the ′′ − 99′′ values with
the mean of the column that the data is taken from. This improves fitting performance
by mitigating the effect of missing data in a somewhat neutral manner. The second object
in the pipeline is a scaler, which subtracts the mean of the data and scales it to have a
standard deviation of 1. This procedure helps standardize the data fed into the algorithms,
and has been shown to greatly improve performance in fitting. Furthermore, this step is
crucial for the dimensionality reduction phase that is usually scale dependent. The next
phase of the pipeline is the dimensionality reduction step. This takes the form of a principle
component analysis with optional whitening. The code is designed so that this can be easily
switched out for kernel PCA, ICA or other dimensionality reduction procedures. Further
iterations of the code will all of these algorithms in the optimization procedure. This step is
crucial in high dimensional problems because of the ”curse of dimensionality” where higher
dimensional datasets result in less training data per unit volume, which often decreases
regression performance. [3] The final stage of the pipeline is the regressor object that can
be trained and used to predict the response variable.

In the optimization code, the best set of meta-parameters is searched for through several
grid searches on the analysis pipeline. More specifically, the code loads a list of regressors
and optimization parameters from the file ”ml classifier list.py”, which keeps the code
modular and cuts down on clutter in the main code. It also facilitates the addition of more
algorithms and parameter spaces to search over. A joint dictionary is then constructed
which adds the PCA and regressor optimization parameters for simultaneous optimization.
This dictionary is the object that sklearn’s grid search object scans over. The grid search
performs a 10-fold cross validation for each set of parameters and automatically deter-
mines the best set of metaparameters. This grid search is then applied to each algorithm
in the list, resulting in a list of grid search regression objects. This list of grid search
regressors is then pickled for later use and plotting. Furthermore, the code prints the re-
sults of every grid search combination to a user specified text file that is by default called
”optimization verbose n.txt”. It also prints the best results to ”optimization best n.txt”
where n is an integer representing the number of times the code has been run. The opti-
mization is also general enough to allow for user created metrics. This analysis uses the
normalized median absolute deviation (σNMAD) , which is more resistant to outliers than
the MSE. [1]

The code currently optimizes over five types of algorithms. Namely, Kernel Ridge regres-
sion (KR), Support Vector Regression (SVR), Random Forest Regression (RF), Gradient
Boosting Regression (GBR), and a multi-layered convolutional neural-network (NN). These
algorithms were chosen because they are some of the most popular and general methods

4



A General Tool for Learning-Algorithm Optimization and Comparison

to fit arbitrary datasets. The parameters for the KR and SVR are optimized over several
different kernels, regularization, and penalty parameters. The optimizations for RF, and
GBR run over the number of estimators and the maximum depth of the trees. Additionally,
GBR runs over different types of loss metrics. The NN optimization runs over the network
structure which defines the number of layers and the number of nodes at each layer and the
number of training iterations. These allow for the metaparameter space of each algorithm
to be explored thoroughly. Sklearn takes in these parameters as lists of dictionaries and a
full breakdown of the parameters used can be found in Appendix C.

In the result-plotting and ensemble-plotting portions of the code, the results of this
optimization are loaded from the pickled file and retrained on the data. The ensemble-
plotting code creates a list of new regressors consisting of the best parameters of each
algorithm fed through a bagging regressor. This bagging regressor functions by creating n
copies of the original regressor, and training the copies on several different subsets of the
training data. The final results are then averaged to decrease the variance. This has been
shown to improve performance of high variance algorithms such as neural networks and
decision trees. The code then uses bootstrapping on these bagging regressors to calculate
trial vs test errors on random selections of the data. It then plots of the spectroscopic
and photometric redshifts for all of these random selections on the same graph. This
bootstrapping procedure helps maximize the amount of training and testing data that can
be used and visualized without jeopardizing the information barrier between training and
test sets. Like the grid search, this calculation is usually lengthy, so it has options for
running on multiple cores and pickles its results to an output file. If the code detects the
presence of this output file, it will skip the bootstrapping calculation and just plot the
results. This adds flexibility for larger scale datasets and larger numbers of objects in a
single bag. The code also has options for sub-sampling and reducing the number of folds in
the cross validation for larger datasets.

4.1 Neural Network Addition to Sklearn

Using the python library Pybrain, I created a neural network regressor class which integrates
with sklearn’s pipeline objects and metrics. This class consists of several hyper-parameters
including the number of training iterations, the network structure, and the response function
for the hidden layers. The network structure is a list of positive integers whose length will
determine the number of layers of the network, and whose values will determine the number
of neurons in the respective layer. These layers are connected with full connections to the
adjacent layers with a response type indicated by the corresponding hyper-parameter. The
network uses a linear input layer with number of nodes equal to the number of inputs and
a single linear output node. The default is the sigmoid function, but the class also supports
softmax, linear, hyperbolic tangent, and Gaussian response functions. The class’s default
scorer is the MSE but this can be overridden by supplying a new scoring function to the
pipeline.

5. Results

The results obtained show significant improvement from the default settings to the optimized
settings. Furthermore, in three of the five algorithm categories, bagging significantly reduced

5



Hamilton

Algorithm PCA comps Whitening Kernel, Response,
or Loss

Gamma Alpha/C Iterations or Number
of objects

KR 15 T Deg 3 poly with
offset

0 1 n/a

SVR 15 F RBF .001 100 n/a

RF 10 T MSE n/a n/a 100

GBR 15 T MSE n/a n/a 50

NN 15 F Sigmoid n/a n/a 800

Figure 1: Summary of optimization results. ”Kernel” applies to KR and SVR, ”Loss”
applies to RF and GBR, and ”Response” applies to NN. ”Alpha” applies KR and
”C” applies to SVR. ”Iterations” applies to NN and ”Number of objects” applies
to RF and GBR.

variance and improved fitting performance with respect to percentage of outliers (η) and the
normalized median σNMAD. Bagging did not improve RF and GBR, perhaps because these
algorithms already employ a bagging strategy. All methods made significant improvement
over the Lephare Parametric fit. Optimized parameters are shown in Figure 1 and regression
results at each stage of the procedure are shown in Figures 3,4,5 .

6. Conclusions

Completely out of the box, this code has made significant improvement on photometric
redshift fitting when compared to standard parametric techniques such as Lephare. The
code took approximately two days to run and converged to very similar solutions during
subsequent re-runs. Furthermore, this code was able to make these significant improvements
with an exceedingly small dataset. With a larger dataset, these methods will undoubtedly
become more effective. This code performs a significant amount of analysis in a convenient
and modular format for easy application to other regression problems.

7. Future Work

While this code is already fairly general, it could be improved by the addition of more
algorithms and a more general procedure for constructing and optimizing over multiple
algorithms. Furthermore, the addition of cyclic coordinate optimization of metaparameters
would be a very nice addition to discover more optimal sets of metaparameters that can
scale to larger problems where dictionary grid searches might be computationally infeasible.
To improve computational performance, I plan to re-develop the neural-network object
using Theano and pylearn2. These systems have a steeper learning curve, but offer GPU
processing and can run approximately 100x faster than pybrain. Considering that the Neural
Network algorithm is the majority of the running time, this is a much needed improvement
for future scalability. Furthermore, I would like to implement a symbolic regressor object
and create an intuitive environment to evolve a family of good symbolic estimators for an
arbitrary dataset. I plan to make this a separate part of the code that can be run alongside

6



A General Tool for Learning-Algorithm Optimization and Comparison

Figure 2: Original Lephare fit on the testing set comparing the spectroscopic redshift and
the photometric redshift. zbest corresponds to the best lephare output and zml

corresponds to the maximum likelihood estimation. Blue lines represent linear
regressions through the points.The solid line is the zphot = zspec relation. The
dashed lines are zphot = 0.05(1+zspec). The dotted lines are zphot = 0.15(1+zspec).
Sources that lie outside the dotted lines are defined as outliers. Lephare was run
with the templates and analysis flow used in [1].

7



Hamilton

Figure 3: Photometric redshift estimate comparison between different algorithms with de-
fault settings. Algorithms from left to right include Kernel Ridge (KR), Support
Vector (SVR) , Random Forest (RF) , Gradient Boosted (GBR) , and a Convolu-
tional Neural Network (NN). Training sets are shown above testing sets and the
red lines are the same from figure 2

8



A General Tool for Learning-Algorithm Optimization and Comparison

Figure 4: Photometric redshift estimate comparison between different algorithms after op-
timization. Algorithms from left to right include Kernel Ridge (KR), Support
Vector (SVR) , Random Forest (RF) , Gradient Boosted (GBR) , and a Convolu-
tional Neural Network (NN). Training sets are shown above testing sets and the
red lines are the same from figure 2

9



Hamilton

Figure 5: Photometric redshift estimate comparison between different algorithms after op-
timization and 30-object bagging. Algorithms from left to right include Kernel
Ridge (KR), Support Vector (SVR) , Random Forest (RF) , Gradient Boosted
(GBR) , and a Convolutional Neural Network (NN). Training sets are shown
above testing sets and the red lines are the same from figure 2

10



A General Tool for Learning-Algorithm Optimization and Comparison

the first optimization. With this addition, the code would have another set of tools for
unraveling the internal structure of the data.

Acknowledgments

Thanks to Professor Meg Urry and Post Doctoral student Stephanie LaMassa for supervising
the project and offering an immense amount of help and guidance throughout the process.
Thanks also to Professor Sahand Negahbahn for his many informative discussions about
machine learning methods. Thank you Dr. Mara Salvato for your many hours of lephare
troubleshooting and helpful tips.

References

[1] Fotopoulou, S., Salvato, M., Hasinger, G., Rovilos, E., Brusa, M., Egami,
E., Lutz, D., Burwitz, V., Henry, J., Huang, J., et al. Photometry and pho-
tometric redshift catalogs for the lockman hole deep field. The Astrophysical Journal
Supplement Series 198, 1 (2012), 1.

[2] Guainazzi, M., Matt, G., and Perola, G. C. X-ray obscuration and obscured agn
in the local universe. Astronomy & Astrophysics 444, 1 (2005), 119–132.

[3] Hastie, T., Tibshirani, R., Friedman, J., and Franklin, J. The elements of sta-
tistical learning: data mining, inference and prediction. The Mathematical Intelligencer
27, 2 (2005), 83–85.

[4] Schlegel, D. J., Finkbeiner, D. P., and Davis, M. Maps of dust infrared emis-
sion for use in estimation of reddening and cosmic microwave background radiation
foregrounds. The Astrophysical Journal 500, 2 (1998), 525.

[5] Uttley, P., and McHardy, I. M. A brief review of long-term x-ray and optical
variability in radio-quiet agn. Progress of Theoretical Physics Supplement 155 (2004),
170–177.

[6] York, D. G., Adelman, J., Anderson Jr, J. E., Anderson, S. F., Annis, J.,
Bahcall, N. A., Bakken, J., Barkhouser, R., Bastian, S., Berman, E., et al.
The sloan digital sky survey: Technical summary. The Astronomical Journal 120, 3
(2000), 1579.

Appendix A: Algorithm Optimization code.

All code has been moved to:
https://github.com/mhamilton723/model_selection

Appendix B: Main code module

All code descriptions have moved to:
https://github.com/mhamilton723/model_selection

11

https://github.com/mhamilton723/model_selection
https://github.com/mhamilton723/model_selection


Hamilton

Appendix C: Regressor Optimization Parameter File

All code descriptions have moved to:
All code descriptions have moved to:
https://github.com/mhamilton723/model_selection

12

https://github.com/mhamilton723/model_selection

	Motivation
	Astrophysics Background
	Data
	Fitting Process
	Neural Network Addition to Sklearn

	Results
	Conclusions
	Future Work

