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ABSTRACT

How does the human mind make sense of raw information without being taught how
to see or hear? This thesis presents a unifying theory that describes how algorithms can
learn and discover structure in complex systems, like natural images, audio, language, and
video - without human input. This class of algorithms has the possibility to extend our own
understanding of the world by helping us to see previously unseen patterns in nature and
science. At the core of this thesis’ unified theory is the notion that relationships between
deep network representations hold the key discover the structure of the world without human
input. This work will begin with a few examples of this principle in action; discovering
hidden connections that span cultures and millennia in the visual arts, discovering visual
objects in large image corpora, classifying every pixel of our visual world, and rediscovering
the meaning of words from raw audio, all without human labels. In the latter half of this
thesis, we will present two unifying mathematical theories of unsupervised learning. The first
will explain why relationships between deep features can rediscover the semantic structure
of the natural world by connecting model explainability, cooperative game theory, and
deep feature relationships. The second mathematical theory will show that relationships
between representations can be used to unify over 20 common machine learning algorithms
spanning 100 years of progress in the field of machine learning. In particular, we introduce a
single equation that unifies classification, regression, large language modeling, dimensionality
reduction, clustering, contrastive learning, and spectral methods. This thesis uses this unified
equation as the basis for a “periodic table of representation learning” that predicts the
existence of new types of algorithms. We show that one of these predicted algorithms is a
state-of-the-art unsupervised image classification technique. Finally, this work will summarize
the key findings and share ongoing and future directions,.
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Chapter 1

Introduction

1.1 Motivation

How does the human mind make sense of raw information without being taught how to
see or hear? Humans have an extraordinary ability to learn about the world around them,
often without explicit instructions or direct supervision. From infancy, we begin the almost
automatic process of learning to recognize objects, interpret language, and navigate our
environment mainly through self-directed observation and exploration. Our ability to convert
raw sensory experiences into meaningful knowledge about the world helps us thrive in a
dizzyingly complex world.

This “unsupervised” or “self-directed” way of learning is crucial not only for an individual,
but also for humanity as a species. We collectively strive to advance scientific knowledge and
make sense of the unknown. Over thousands of years, humans have voraciously devoured
data in the name of discovering the secret order that underlies our natural world. For
example, Dmitri Mendeleev discerned the periodic patterns of elements through careful study
of chemical properties such as weight and reactivity. Similarly, Johannes Kepler uncovered
the laws of planetary motion by analyzing astronomical data when no-one else believed that
planets moved in elliptical orbits. In these cases, humanity’s scientists and thinkers were not
taught the answers by their teachers; rather, they observed the natural world, studied the
data, and used it to guide the formation of fundamentally new knowledge.

In stark contrast, traditional machine learning systems often rely on extensive datasets
where each piece of data is explicitly labeled by human experts. These “supervised” methods,
while powerful, are fundamentally limited by the quality of their labels. This limits our
ability to use these kinds of algorithm when we don’t know what the correct answer should
be. If we want to be able to automatically discover new science that rivals that of Kepler or
Mendeleev, we must study algorithms that can go beyond what we already know and learn
without direct human supervision.

This thesis will explore how we can create algorithms that can learn to see, hear, and
understand the world directly from raw sensory data without human guidance. We will
explore this problem from a variety of angles. We will see how these algorithms can rediscover
many of the same concepts humans use in their daily lives like visual objects and language,
and how they can give us new insights on existing datasets. This work will cover both the
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technical details behind specific systems and introduce deeper mathematical theories behind
why they work. Towards the end of this work we will introduce a single equation that unifies
more than 23 different commonly used machine learning methods in the broader literature
and the thesis itself. We will use this equation as the basis for a new periodic table of machine
learning and use the “gaps” in this table to predict new kinds of algorithms, just as Mendeleev
used the “gaps” in his periodic table to predict the existence of new elements. We will see
that the algorithms presented in earlier chapters appear as elements in this periodic table,
and this lens will allow us to derive new algorithms that perform better than previously
known methods. In this sense, this thesis will unify a broad swath of representation learning
using a simple central idea: relationships between deep representations are the foundation
upon which unsupervised algorithms are built.

More technically, each chapter of this thesis will study the ideas (commonly called
“representations” or “features”) learned by deep unsupervised learning algorithms. Although
these algorithms never saw human labels, their representations display an emergent high-level
semantic understanding of their training data. This thesis overcomes a key challenge: How
can we extract useful and human-interpretable knowledge from the high-dimensional vectors
commonly learned by deep networks? To this end, we show by considering the relationships
between representations rather than the representations themselves, we can extract some of
the rich information hidden in deep representations. In particular, each algorithm presented
in this thesis shows that by studying, querying, and distilling these relationships, we can build
systems that understand our world, convey this information clearly, and learn completely
without human supervision. This observation is not just qualitative: we will see in Chapters
7 and 8 that this idea has the power to provide unifying theories for model explainability and
representation learning as a whole.
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1.2 Overview

Chapter Brief Summary
2 Explains some key concepts that appear in the thesis in plain english.

Good to read if you are in a field outside of ML.
3 “MosAIc” finds hidden cross-cultural and cross-media connections across

large art museum collections using relationships between global visual
representations.

4 “STEGO” discovers visual objects and classify every pixel of a visual
dataset without labels using relationships between dense visual represen-
tations.

5 “FeatUp” upsamples any algorithm’s dense visual representations by 64×
by analyzing how these representations change as we jitter the algorithm’s
input. FeatUp shows that STEGO’s discovered semantics can be made
“pixel-perfect” without retraining.

6 “DenseAV” rediscovers the meaning of words in language and location
of sound by analyzing the relationships between dense audio and visual
representations.

7 We introduce an axiomatic theory for explaining the predictions of unsu-
pervised models and search engines. These explanations are precisely the
comparison between features used in DenseAV and STEGO.

8 We introduce a single equation (I-Con) unifying over twenty common
learning methods and introduce a periodic table of representation learning.
This equation is based on relationships between representations and
generalizes both STEGO and DenseAV.

Table 1.1: Chapter summary and their connection to the main themes of this thesis: By
studying the relationships between deep representations we can create algorithms capable of
learning the structure of complex systems without human supervision.

This thesis will cover both the theory and practice of creating algorithms that learn without
human guidance. The first few chapters will cover specific examples of these algorithms and
how they can discover rich and intriguing structure from our natural world without human
guidance. The latter half of this thesis will then formalize the ideas introduced in earlier
chapters and show that they form the basis for a framework to unify 6 algorithms in model
explainability (Chapter 7) and a single equation that unifies over 23 algorithms from the
broader machine learning literature (Chapter 8). For quick overviews of the content of this
thesis Table 1.1 presents 1 sentence chapter summaries, Figure 1.1 depicts the key ideas of
this thesis in a graphical format, and Table 1.2. Chapter 2 provides simply written intuitive
descriptions of key concepts that appear in the work for readers from other fields.

We begin this work with a first example of how relationships between deep-network
features can help us find novel connections in the visual arts. Chapter 3 presents the MosAIc
system, which finds hidden cross-cultural and cross-media relationships in the collected works
of the Metropolitan Museum of Art and the Rijksmuseum. MosAIc discovers compelling
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visual analogies and artistic motifs that span both millennia and cultural barriers by studying
the relationships between deep representations in large vision foundation models. This
work not only helped thousands of museum visitors explore these art collections during the
COVID-19 pandemic, but also produced a new technique that discovered “blind spots” in
image generation algorithms where these methods systematically failed to capture the true
diversity of their training data.

Chapter 3 shows that relationships between deep visual features capture important
semantic similarities between objects, even if they appear in extremely varied context and
settings. Chapter 4 builds on this idea and demonstrates that the very same pairwise affinities
which let MosAIc spot kinship between artworks are also rich enough to define objects
themselves. This chapter introduces STEGO, an algorithm that can discover a consistent
ontology of visual objects and simultaneously classify every pixel of the world without human
supervision anywhere in the pipeline. At its core, STEGO uses the relationships between
dense deep visual features as its own form of “supervision” to train an unsupervised semantic
segmentation system. This work doubled the performance of prior state-of-the-art methods
and could rediscover the same objects as human annotators. Most interestingly, STEGO’s
purely unsupervised performance rivaled that of systems trained with thousands of human
annotations across three diverse datasets: natural images, aerial land cover surveys, and
first-person driving images. This work shows that large-scale visual categorization can emerge
from analyzing relationships between dense visual representations, which later allowed the
community to build methods for novel scientific domains such as medical imaging [1], LIDAR
point clouds [2], animal behavior [3], and nanoelectronics [4].

Although chapter 4 shows that deep features can be used effectively for unsupervised
semantic segmentation, this algorithm still suffered from the relatively low spatial resolution
of many deep network representations. Chapter 5 tackles this long-standing practical obstacle:
deep features are typically available only at coarse spatial resolutions (e.g. 7 × 7 for a
ResNet-50), crippling algorithms like STEGO that use dense visual features to solve dense
prediction tasks such as semantic segmentation, depth, or optical flow. FeatUp resolves
this limitation by learning to up-sample deep network representations by up to 64× while
preserving their exact semantics. Under the hood, FeatUp observes how a network’s dense
representations change as one varies the network’s input image. By observing how slight
changes to an image affect a network’s deep representations, FeatUp can piece together the
true high-resolution structure of the network’s dense visual representations. FeatUp can
up-sample any vision backbone without supervision and yields dramatic gains including
sharper class-activation maps, +4–5 mIoU on semantic segmentation benchmarks, and clearer
depth estimation. FeatUp therefore equips all subsequent chapters with rich semantic features
with pixel-perfect resolution.

Equipped with the tools of Chapter 4 and 5, Chapter 6 extends the thesis from vision
to multi-modal understanding. This chapter introduces DenseAV, an algorithm that uses
relationships between deep audio and video features to rediscover the meaning of language
without any human labels or text. DenseAV shows that by comparing deep feature represen-
tations, a network can rediscover the meaning of spoken words without ever seeing text or
category labels. This finding generalizes the core hypothesis: meaningful abstractions arise
from studying the relationships between deep features across modalities just as they do within
a single sensory modality. It also serves as the start of a broader ongoing effort discussed in

30



Chapter 9 to create a machine learning system that can decode the communication of the
Atlantic Spotted Dolphin.

Chapters 4 and 6 both show that the correspondences between dense visual features
hold the secret to understanding language and visual objects without human supervision.
Chapter 7 grounds this observation in mathematical theory and explains why and how these
correspondences capture the semantics of the world so well. In particular, this chapter
proves that the dense correspondences exploited by STEGO and DenseAV have a rigorous
footing in cooperative game theory and model explainability. More formally, we interpret
similarity-based predictions as games whose “players” are pixels or features. In this context,
the Shapley and Harsanyi values of these games then assign each player an equitable share of
the model’s output. In this light, the dense feature similarities used in STEGO and DenseAV
are precisely the “explanations” of the original unsupervised learner, explaining why they
work so well in practice. Finally, we show this viewpoint generalizes and unifies several
popular model explanation techniques such as Grad-CAM, Integrated Gradients, and LIME,
and introduces efficient estimators that improve Harsanyi dividend convergence speeds by
more than 10× compared to previous approaches.

Chapter 8 pushes further and explicitly formalizes the notion that relationships between
representations are the key to unifying a broad swath of the machine learning literature. In
particular, Chapter 8 introduces I-Con (Information-Contrastive), a single equation that
unifies over 23 seemingly disparate learning objectives including classification, regression,
LLMs, clustering, dimensionality reduction, contrastive learning, and spectral graph theory.
This chapter shows that all of these approaches share the same underlying equation and can
even be organized into a periodic table of representation learning. In this periodic table, every
method can be viewed an example of distilling the relationships of one type of data-structure
into another type of data-structure by minimizing a KL-divergence between two neighborhood
distributions: one produced by a model, the other supplied (explicitly or implicitly) by data.
We find that empty cells in our table predict the existence of novel algorithms. We show that
one such a “gap in the periodic table” yields a state-of-the-art unsupervised image clusterer
that improves ImageNet accuracy by eight percentage points. I-Con therefore elevates the
thesis’ central theme of studying the relationships between deep representations to the level
of a universal equation, offering a road map for future discoveries beyond the works collected
here.

Finally, Chapter 9 summarizes the key findings of this thesis and briefly describes ongoing
research and future directions.
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Figure 1.1: A graphical illustration of the content of this thesis. This work aims to understand
how we can build algorithms that understand the world without human labels so we can help
humans solve new problems. The thesis has three main thrusts, understanding the theory
behind these algorithms, building these algorithms, and using them to discover interesting
structure in the world.

1.3 Impact

This thesis expands what machines—and therefore humans—can understand. By introducing
STEGO and DenseAV (Chapters 4 and 6) this thesis shows that fully unsupervised systems
can discover objects and language without human supervision at any stage of the learning
pipeline. These works dramatically improve on challenging benchmarks such as unsupervised
and speech-prompted semantic segmentation by over 50%. These techniques have already
been cited more than 400 times, starred by over 2.3 thousand developers on GitHub, and
deployed in novel scientific domains such as medical imaging [1], LIDAR pointclouds [2],
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animal behavior [3], and nano-electronics [4]. By introducing FeatUp (Chapter 5) this
thesis provides a key resource to the community to overcome the limited resolution of deep
features in any vision backbone without altering the semantics of the network. FeatUp
allows practitioners in any field to improve downstream task performance by up to 15%
without retraining their systems (See Section 5.6). This thesis introduces a periodic table of
representation learning (Chapter 8), which serves not just as a way to unify the field, but
to guide the field towards a simple procedure to discover new classes of machine learning
algorithms. I-Con has already been taught in lectures at MIT as a way to help students learn
a broad class of algorithms within a single lecture.

In addition to impacting the fields of computer science and machine learning, this thesis
has had broader corporate and societal impacts. Several chapters of this thesis (Chapters 3
and 7) formed the basis of the SynapseML project at Microsoft [5–8]. This project, which
the author developed and led during this thesis, now has over 10,000 monthly active users,
125 contributors, and 8 million downloads. This project has also been awarded with a
TIME Top 200 Invention of 2023 for its role in helping communities connect with literature,
demonstrating impact for broader communities outside of computer science. The project
enables industry-scale AI across a wide array of domains and embeds the fairness audits, first
proposed in Chapter 7, in both customer-facing and internal Microsoft production systems
[9]. Finally, Chapter 3 of this thesis was featured by the Metropolitan Museum of Art and
Smithsonian Magazine for its role in helping museum visitors and art historians connect
with different cultures and artistic media during the COVID-19 pandemic when physical
museum spaces were closed. This application received tens of thousands of visitors from over
50 countries worldwide.

Finally, the thesis charts pathways for AI to collaborate with scientists on problems humans
cannot solve alone. Chapter 9 describes ongoing collaborations to use the methods in Chapter
6 to create algorithms that are beginning to decode the communication of the Atlantic spotted
dolphin from more than ten years of data collected by biologists and nonprofits. Similar
ongoing work described in Chapter 9 work shows that large language models can match
expert judgments in systematic reviews with 95% accuracy, saving researchers thousands of
hours and laying the groundwork for algorithms that can automate science. This thesis lays
the groundwork for AI systems that read, listen, and reason far beyond human limits while
remaining accountable and accessible to the communities they serve.
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1.4 Videos and Citations to Accompany Chapters

To make it easier to learn about the content of this thesis, Table 1.2 includes a series of short
videos, web-based blog posts, and links to the original papers on which the chapters of this
thesis are based. We also include a link to the PhD defense which can help new readers learn
key material (especially chapters 3,5, and 7) within 45 minutes.

Chapters Resources and Publication
4, 6, and 8 Thesis Presentation Video

3

MosAIc: Finding Artistic Connections across Culture with Conditional Image
Retrieval
Mark Hamilton, Stephanie Fu, Mindren Lu, Johnny Bui, Darius Bopp, Zhenbang
Chen, Felix Tran, Margaret Wang, Marina Rogers, Lei Zhang, Chris Hoder, William
T Freeman
NeurIPS Competition & Demonstration Track, 2020
Resources: Paper, Video, Demo App

4

Unsupervised Semantic Segmentation by Distilling Feature Correspondences
Mark Hamilton, Zhoutong Zhang, Bharath Hariharan, Noah Snavely, William T
Freeman
International Conference on Learning Representations (ICLR), 2022
Resources: Website with paper & video

5

Featup: A Model-Agnostic Framework for Features at Any Resolution
Mark Hamilton, Stephanie Fu, Laura Brandt, Axel Feldman, Zhoutong Zhang,
William T Freeman
International Conference on Learning Representations (ICLR), 2024
Resources: Website with paper & video

6

Separating the “Chirp” from the “Chat”: Self-Supervised Visual Grounding of Sound
and Language
Mark Hamilton, Andrew Zisserman, John R Hershey, William T Freeman
Computer Vision and Pattern Recognition (CVPR), 2024
Resources: Website with paper & video

7

Axiomatic Explanations for Visual Search, Retrieval, and Similarity Learning
Mark Hamilton, Scott Lundberg, Lei Zhang, Stephanie Fu, William T Freeman
International Conference on Learning Representations (ICLR), 2022
Resources: Website with paper & video

8

I-Con: A Unifying Framework for Representation Learning
Shaden Naif Alshammari, John R Hershey, Axel Feldmann, William T Freeman,
Mark Hamilton
International Conference on Learning Representations (ICLR), 2025
Resources: Website with paper & video

Table 1.2: Online resources and full publication details for each chapter.
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Chapter 2

Preliminaries

This chapter provides a gentle introduction to the core ideas and mathematical objects
that underpin the remainder of this thesis. The aim is to offer intuitive explanations and
background on foundational concepts in machine learning, deep learning, and representation
learning, especially for readers from different backgrounds. Readers already familiar with
these areas may wish to skim or skip this section.

2.1 Vectors, Matrices, and Inner Products

Many of the ideas in machine learning and deep learning are most easily described using
vectors and matrices. A vector is simply an ordered list of numbers, often written as
v = [v1, v2, ..., vn]. Vectors are useful for representing data, such as the pixel values in an
image or the “ideas” an algorithm comes up with about an object.

A matrix is a two-dimensional array of numbers, and can be thought of as a collection of
vectors arranged in rows or columns. Matrices are fundamental tools for organizing data,
and also for describing the weights inside machine learning models. Matrices can transform
vectors through matrix-vector multiplication. This is a fundamental operation for machine
learning algorithms that transform data.

The inner product (or dot product) between two vectors a and b, written ⟨a,b⟩ or a · b,
is computed by multiplying corresponding elements and adding them up:

∑n
i=1 aibi. Inner

products play a key role in measuring similarity between vectors.

2.2 Probability

Probability is the mathematical study of uncertainty. It provides a way to quantify how
likely an event is to occur, using numbers between 0 (impossible) and 1 (certain). In machine
learning, probability helps us model and reason about data, randomness, and predictions.
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2.3 Conditional Probability

Conditional probability describes the likelihood of an event given that we know something
else has happened. It is written as P (A | B), which means the probability of A given B.
Conditional probability is fundamental for reasoning about dependencies between variables,
and is widely used in probabilistic models and algorithms.

2.4 What is Machine Learning?

Machine learning is the study of algorithms that improve through experience. Rather than
following explicit rules written by humans, machine learning algorithms “learn” patterns from
data. These algorithms can be trained to perform tasks such as classifying images, translating
languages, or recommending movies.

2.5 Supervised Learning

Supervised learning is a type of machine learning where the algorithm learns from examples
that include both inputs and desired outputs. For instance, in image classification, the
algorithm sees many images, each labeled with its correct category. The goal is to learn a
rule that predicts the label for new, unseen images.

2.6 Self-Supervised and Unsupervised Learning

In unsupervised learning, the algorithm receives only raw data, without any labels or outputs.
The aim is to discover structure or patterns in the data. For example, clustering algorithms
try to group similar objects together.

Self-supervised learning is a recent and rapidly growing area where the learning algorithm
generates its own supervision by solving auxiliary tasks. For instance, it might learn by
predicting missing parts of an image, or by distinguishing whether two pieces of data are
related.

2.7 Clustering

Clustering is an unsupervised learning technique used to group similar data points together
based on their features. The goal is to discover structure in the data by organizing it into
clusters, where items within a cluster are more similar to each other than to those in other
clusters. Clustering methods are widely used in representation learning to analyze and
evaluate the learned feature spaces.
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2.8 Deep Learning

Deep learning refers to a set of machine learning techniques that algorithms with many layers
(hence “deep”) inspired by the human brain. These networks are composed of interconnected
units, or “neurons”, which can learn to represent highly complex patterns in data. Deep
learning has enabled breakthroughs in computer vision, natural language processing, and
many other fields.

2.9 Deep “Representations” or “Features”

A central idea in modern machine learning is that models learn to extract “features” or
“representations” from raw data. In deep learning, each layer of a neural network transforms
the data into a new representation. Early layers might detect simple patterns (like edges
in images), while deeper layers capture more abstract concepts (like objects or actions).
Representations usually take the form of vectors of data. These vectors are usually “learned”
from the data and capture the “ideas” that a network has about a piece of data.

2.10 From Low Level Representations to Semantics

Initially, data is represented at a low level (e.g., pixel values in images, waveform samples
in audio). As information passes through the layers of a deep network, the representations
become increasingly abstract and semantic, eventually capturing high-level ideas such as the
identity of an object, the sentiment of a sentence, or the meaning of a word.

2.11 Vectors as Carriers of Meaning or Semantics

In modern machine learning, vectors do not just store numbers—they can capture meaning
or semantics about data. For example, the feature vector produced by a neural network for
an image might encode the presence of objects, their shapes, or even more abstract concepts.
In language models, word vectors can represent similarities in meaning: words with similar
meanings often have feature vectors that are close together in the learned space. In this way,
vectors act as mathematical stand-ins for the underlying ideas, objects, or meanings present
in the data.

2.12 Inner Products and Cosine Similarity Between Fea-
tures

One simple way to compare two feature vectors is to compute their inner product. A related
measure is the cosine similarity, which takes the inner product of two vectors and divides by
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the product of their lengths (norms):

cosine similarity(a,b) =
⟨a,b⟩
∥a∥∥b∥

Cosine similarity ranges from −1 (opposite directions) to 1 (same direction), and is commonly
used to measure how similar two representations are, regardless of their magnitudes.

This thesis will focus a great deal of effort into algorithms that compare features with
inner products. Every chapter will cover an algorithm that compares features with inner
products. This computation will effectively allow us to ask “how similar are these two objects
or representations" on a scale that ranges from -1 (opposites) , 0 (unrelated), 1 (the same)
and all values in between.

2.13 Contrastive Learning

Contrastive learning is a machine learning approach where models learn by comparing pairs of
examples. The idea is to bring similar examples closer together in their learned representation,
while pushing dissimilar examples further apart. For instance, different views of the same
image are treated as similar, and images from different sources are treated as dissimilar.

This method is especially useful in self-supervised learning, where explicit labels are not
available. By learning from comparisons, contrastive learning helps models discover useful
and general representations from raw data.

2.14 Foundation Models and Backbones

Foundation models are large machine learning models trained on broad and diverse datasets,
often at scale, to solve a wide range of tasks. These models, such as large language models
and vision transformers, serve as general-purpose systems that can be adapted to many
applications with little or no additional training.

The term backbone refers to the main part of a neural network used to extract features from
data. In practice, backbones are often pre-trained models that provide useful representations
for tasks like classification, retrieval, or segmentation. Many modern systems build on
foundation models or use popular backbones as the starting point for more specialized models.

2.15 Transfer Learning

Transfer learning is a technique where a model trained on one task or dataset is reused as
the starting point for a new task. Instead of training a new model from scratch, transfer
learning leverages the knowledge already captured by an existing model, often leading to
faster training and better performance, especially when labeled data is limited.

A common approach in deep learning is to use a pre-trained model as a feature extractor,
and then train a simple classifier—called a linear probe—on top of these features for a specific
task. The linear probe is typically just a single linear layer that learns to map the pre-trained
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representations to new labels. This strategy is widely used to evaluate how much useful
information is captured by the learned representations of a model.

2.16 Neural Network Architectures

Neural network architectures define how the layers and connections in a network are organized.
Two of the most important architectures in modern deep learning are convolutional neural
networks (CNNs) and transformers.

Convolutional neural networks (CNNS) are especially well-suited for image and
visual data. They use convolutional layers that scan small regions of the input, allowing
them to detect patterns like edges, textures, and shapes. This makes CNNs very effective for
image classification, object detection, and similar tasks.

Transformers, originally developed for natural language processing, have become popular
across many domains, including vision and audio. Transformers rely on a mechanism called
self-attention, which enables them to model relationships between all parts of the input,
regardless of their position. This flexibility has made transformers the backbone of many
recent advances in deep learning, such as large language models and powerful vision models.

The choice of architecture—CNN, transformer, or otherwise—can greatly affect a model’s
ability to learn effective representations for a given problem.

2.17 Image Retrieval and Search Engines

Image retrieval systems allow users to find images similar to a given query. Modern systems
often work by comparing feature representations of images using inner products or cosine
similarity. The general idea extends to search engines for text, audio, and other types of data:
relevant results are those whose representations are most similar to the query’s representation.

2.18 Multimodal Learning

Multimodal learning refers to building models that can process and combine information from
different types of data, such as images, text, audio, or video. By learning joint representations
that connect multiple modalities, these models can, for example, match captions to images
or relate sounds to objects in a scene. Multimodal approaches are essential for tasks that
require understanding and reasoning across different forms of information.

2.19 Model Explainability

As machine learning models become more complex, it becomes increasingly important to
understand how they make decisions. Model explainability refers to a range of techniques
designed to make the behavior of models more transparent to humans. For example, some
methods highlight which parts of an image contributed most to a prediction, or explain why
a particular item was retrieved by a search engine.
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2.20 Information Theory

Information theory is a field of mathematics that studies how information is measured,
transmitted, and compressed. It introduces concepts such as entropy, which quantifies the
uncertainty or randomness in data, and mutual information, which measures how much
knowing one variable tells us about another. Information theory provides the foundation for
many ideas in machine learning, including how models learn, represent, and communicate
information.

2.21 KL Divergence

The Kullback-Leibler (KL) divergence is a mathematical measure of how one probability
distribution differs from another. If P and Q are two probability distributions, the KL
divergence from Q to P is:

DKL(P∥Q) =
∑
i

P (i) log
P (i)

Q(i)

KL divergence is widely used in machine learning to measure how well a model’s predicted
distribution matches the true distribution of data, and plays a central role in many algorithms
for learning representations.

2.22 Game Theory

Game theory is a branch of mathematics that studies situations where multiple agents (or
players) interact, each making decisions that affect the outcome for everyone involved. It
provides tools to analyze how individuals or groups choose strategies, anticipate others’
actions, and respond to incentives. Game theory has applications in economics, biology,
computer science, and machine learning, especially when modeling competition or cooperation
among agents.

2.23 Cooperative Game Theory

Cooperative game theory focuses on scenarios where agents can form groups, or coalitions,
and work together to achieve shared goals. The central questions are how to assign credit or
value to each participant and how to fairly distribute rewards among them. Key concepts
from cooperative game theory, such as the Shapley value, have become important in model
explainability—helping to determine how much each feature or input contributes to a machine
learning model’s prediction.
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2.24 The Shapley Value

The Shapley value is a concept from cooperative game theory that provides a fair way to assign
credit or importance to each participant in a group working together. In machine learning,
the Shapley value is often used to measure how much each feature or input contributes to
a model’s prediction. It does this by considering all possible combinations of features and
averaging their contributions.

A remarkable property of the Shapley value is its uniqueness: it is the only method that
satisfies a specific set of fairness criteria—efficiency, symmetry, linearity, and the dummy
property. These criteria capture the idea of fairness in several ways: the total credit
is always fully distributed (efficiency), equal contributors receive equal credit (symmetry),
irrelevant participants get zero credit (dummy property), and contributions add up consistently
(linearity). Together, these properties ensure that the Shapley value gives a principled and
fair assignment of credit to all participants or features.

2.25 The Harsanyi Dividend

The Harsanyi dividend generalizes the Shapley Value and measures the unique contribution
made by a specific group of participants (or features) working together, beyond what any
smaller subgroup can achieve on its own. In machine learning, Harsanyi dividends can help
explain how combinations of features interact to influence a model’s prediction, by isolating
the effect that only arises when certain features are considered together. Shapley Values are
in some sense a “first-order” Harsanyi Dividend.
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Chapter 3

MosAIc: Relationships Between Visual
Representations can find Connections in
Art that Span Time and Culture

Figure 3.1: Conditional image retrieval results on artwork from the Metropolitan Museum of
Art and Rijksmuseum using media and culture (text above images) as conditioners.

3.1 Website and Video

For a quick video overview and interactive demonstration of the material in this chapter, see
our Video and Demo App.
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3.2 Chapter Summary

This chapter marks a first exploration of possible applications that can be built by carefully
analyzing the relationships between visual representations in large corpora of art. This chapter
introduces “MosAIc”, an interactive web app that allows users to find pairs of semantically
related artworks that span different cultures, media, and millennia. To create this application,
we introduce Conditional Image Retrieval (CIR) which combines visual similarity search
with user supplied filters or “conditions”. This technique allows one to find pairs of similar
images that span distinct subsets of the image corpus. We provide a generic way to adapt
existing image retrieval data-structures to this new domain and provide theoretical bounds
on our approach’s efficiency. To quantify the performance of CIR systems, we introduce
new datasets for evaluating CIR methods and show that CIR performs non-parametric style
transfer. Finally, we demonstrate that our CIR data-structures can identify “blind spots” in
Generative Adversarial Networks (GAN) where they fail to properly model the true data
distribution.

3.3 Introduction

We begin this thesis with an analysis of deep image representations from both supervised
and self-supervised networks. Although these types of algorithms are trained to solve
simple tasks like classification or retrieval respectively, they learn deep representations of
spectacular intelligence and fidelity. By asking the simple question: “What images have
similar representations?” we can build apps like image search engines, recommendation
systems, image de-duplication systems, and more. This chapter expands on these key ideas
through the lens of charting the flow of ideas in the visual arts. We find that by modifying
the core question to “Can I find a pair of images that arise in very different artistic settings
(cultures, media, time periods, etc), yet have very similar representations?” we can build
systems that discover uncanny, and historically interesting pairs of artworks that reflect
broader flows of art over time. Most interestingly, this algorithm is totally unsupervised
and requires no labels other than some basic metadata about where an artwork originated
and what media the artwork uses. The system needs no knowledge of cultural exchange,
human migration, or artistic provenance a-priori. This will be our first example of how hidden
relationships between deep image features have the power to discover tangible relationships
in large and complex datasets.

Image retrieval (IR) systems aim to find related images in a large corpora from any
given query image. These systems power products like Google Image Search, Tin-Eye,
product recommendations, and many other important applications. In many image retrieval
applications, it is natural to limit the scope of the query to a subset of images. For example,
returning similar clothes by a certain brand, or similar artwork from a specific artist. Currently,
it is a challenge for IR systems to restrict their attention to sub-collections of images on
the fly, especially if the subset is very distinct from the query image. This work explores
how to create image retrieval systems that work in this setting, which we call “Conditional
Image Retrieval" (CIR). We find that CIR can uncover pairs of artworks within the combined
open-access collections of the Metropolitan Museum of Art [10] and the Rijksmuseum [11]
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that have striking visual and semantic similarities despite originating from vastly different
cultures and millennia and introduce an interactive web app MosAIc (www.aka.ms/mosaic)
to demonstrate the approach. To understand our methods better, we evaluate CIR on the
FEI Face Database [12] as well as two new large-scale image datasets that we introduce to
help evaluate these systems. These experiments show that CIR can perform a non-parametric
variant of “style transfer” where neighbors in different subsets have similar content but are in
the “style” of the target subset of images.

We also investigate ways to improve IR system performance in the conditional setting.
One challenge current systems face is that a core component of many IR systems, K-Nearest
Neighbor (KNN) data-structures, only support queries over the entire corpus. Restricting
retrieved images to a particular class or filter requires filtering the “unconditional” query
results, switching to brute force adaptively [13], or building a new KNN data-structure for
each filter. The first approach is used in several production image search systems [14–16], but
can be costly if the filter is specific, or the query image is far from valid images. Switching to
brute force adaptively can mitigate this problem but is limited by the speed of brute force
search, and its performance will degrade if the target subset far from the query point. Finally,
maintaining a separate KNN data-structure for each potential subset of the data is costly and
can result in 2n data-structures, where n is the total number of images. In this work, we show
that tree-based data-structures provide a natural way to improve the performance of CIR.
More specifically, we prove that Random Projection Trees [17] can flexibly adapt to subsets
of data through pruning. We use this insight to design a modification to existing tree-based
KNN methods that allows them to quickly prune their structure to adapt to any subset of
their original data using an inverted index. These structures outperform the commonly used
CIR heuristics mentioned above. Finally, we investigate the structure of conditional KNN
trees to show that they can reveal areas of poor convergence and diversity (“blind spots”) in
image based GANs. We summarize the contributions of this work as follows:

• We introduce an interactive web application to discover connections across cultures,
artists, and media in the visual arts.

• We prove an efficiency lower bound for solving CIR with pruned Random Projection
trees.

• We contribute a strategy for extending existing KNN data-structures to allow users to
efficiently filter resulting neighbors using arbitrary logical predicates, enabling efficient
CIR.

• We show that CIR data-structures can discover “blind spots” where GANs fail to match
the true data.

3.4 Background

IR systems aim to retrieve a list of relevant images that are related to a query image.
“Relevance” in IR systems often refers to the “semantics” of the image such as its content,
objects, or meaning. Many existing IR systems map images to “feature space” where distance
better corresponds to relevance. In feature space, KNN can provide a ranked list of relevant
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Figure 3.2: Conditional K-Nearest Neighbors
for a query point, q, and distance, δ, on a
simple two class dataset.

Component Space Efficiency Measured
Data O(n× d) 16 GB
Tree O((2n/l)× d) 65 MB

Cond. Index O(c× 2n/l) 6.4 MB

Table 3.1: Space efficiency of a binary CKNN
Tree with number of points, n, dimensionality,
d, leaf size l, and number of classes in the
index, c. Measured results are from a tree
built on the Conditional Art dataset: n =
1000000, d = 2048, l = 500, c = 200.

Figure 3.3: A pair of cross cultural images found with CIR. Left: Model Paddling Boat from
1980 BC Egypt. Right: Immortal Raft from 18th Century China.

images [18]. Good features and distance metrics aim to align with our intuitive senses of
similarity between data [19] and show invariance to certain forms of noise [20]. There is a
considerable body of work on learning good “features" for images [21–25]. In this work we
leverage features from intermediate layers of deep supervised models, which perform well in a
variety of contexts and are ubiquitous throughout the literature. Nevertheless, our methods
could apply to any features found in the literature including those from collaborative filtering,
text, sound, and tabular data.

There are a wide variety of KNN algorithms, each with their own strengths and weaknesses.
Typically, these methods are either tree-based, graph-based, or hash-based [26]. Tree-based
methods partition target points into hierarchical subsets based on their spatial geometry and
include techniques such as the KD Tree [27], PCA Tree [28], Ball Tree [29], some inverted
index approaches [30], and tree ensemble approaches [31]. Some tree-based data-structures
allow exact search with formal guarantees on their performance [17]. Graph-based methods
rely on greedily traversing an approximate KNN graph of the data, and have gained popularity
due to their superior performance in the approximate NN domain [26, 32]. There are many
hash-based approaches in the literature and [33] provides a systematic overview. To our
knowledge, neither graph nor hash-based retrieval methods can guarantee finding the nearest
neighbor deterministically. However, fast approximate search is often sufficient for many
applications. In our work we focus on tree-based methods because it is unclear how to create
an analogous method for graph-based data-structures. Nevertheless, tree-based methods are
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Figure 3.4: Representative samples from the ConditionalArt dataset (left), ConditionalFont
dataset (middle), and FEI Face dataset (right). CIR systems conditioned on style should
retrieve images of the same content.

widely used, especially when exact results are needed. Surprisingly, conditional KNN systems
have only received attention recently, even though conditional queries appear in shopping,
search, and recommendation systems. To our knowledge, [13] is the only effort to improve
performance of these systems by adaptively switching from a “query-then-filter" strategy to
brute-force at a particular size threshold.

3.5 Conditional Image Retrieval

To generalize an IR system to handle queries over any image subset we generalize the KNN
problem to this setting. More formally, the Conditional K-Nearest Neighbors (CKNNs) of a
query point, q, are the k closest points with respect to the distance function, δ, that satisfy
a given logical predicate (condition), S. We represent this condition as a subset of the full
corpus of points, X :

CNN(q,S ⊆ X ) = argmin
t∈S

δ(q, t)

When the conditioner, S, equals the full space, X , we recover the standard KNN definition.
Figure 3.2 shows a visualization of CKNN for a two-dimensional dataset with two classes.
With conditional KNN queries it’s possible to combine logical predicates and filters with
geometry-based ranking and retrieval.

To create a CIR system, one can map images to a “feature-space”, where distance is
semantically meaningful, prior to finding CKNNs. One of the most common featurization
strategies uses the penultimate activations of a supervised network such as ResNet50 [34]
trained on ImageNet [35]. Alternatively, using “style” based features from methods like AdaIN
[36] enable CIR systems that retrieve images by “style” as opposed to content. Deep features
capture many aspects of image semantics such as texture, color, content, and pose [37] and
KNNs in deep feature space are often both visually and semantically related. We aim to
explore whether this observation holds for conditional matches across disparate subsets of
images, which requires a more global feature-space consistency.
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Featurization Method
Dataset Metric RN50 RN101 MN SN DN RNext dlv3101 MRCNN Random

CA @1 .50 .51 .55 .44 .59 .46 .37 .45 .0002
@10 .70 .68 .71 .62 .76 .65 .55 .63 .002

CF @1 .41 .37 .39 .44 .43 .38 .33 .44 .016
@10 .77 .76 .76 .80 .79 .76 .73 .79 .16

FEI @1 .80 .84 .85 .79 .87 .86 .72 .78 .005
@10 .94 .93 .94 .89 .95 .94 .86 .92 .05

Table 3.2: Performance of CIR (Accuracy @N) on content recovery across style variations
for both the ConditionalFont (CF) and ConditionalArt (CA) datasets using a variety of
features from pre-trained networks. Results show CIR retrieves the same content image
across different styles. For full details on experimental conditions see Section 3.13

.

3.6 Discovering Shared Structure in Visual Art

We find that CIR on the combined Met and Rijksmusem collections finds striking connections
between art from different histories and mediums. These matches show that even across
large gaps in culture and time CIR systems can find relevant visual and semantic relations
between images. For example, Figure 3.3 demonstrates a pair of images that, despite being
separated by 3 millennia and 7,000 Kilometers, have an uncanny visual similarity and cultural
meaning. More specifically, both works play a role in celebrating and safeguarding passage
into the afterlife [38–40]. Matches between cultures also highlight cultural exchange and
shared inspiration. For example, the similar ornamentation of the Dutch Double Face Banyan
(left) and the Chinese ceramic figurine (top row second from left) of Figure 3.1 can be traced
to the flow of porcelain and iconography from Chinese to Dutch markets during the 16th-20th

centuries [41, 42]. CIR also provides a means for diversifying the results of visual search
engines through highlighting conditional matches for cultures, media, or artists that are less
frequently explored. We hope CIR can help the art-historical community and the public
explore new artistic traditions. This is especially important during the COVID-19 pandemic
as many cultural institutions cannot accept visitors. To this end, we introduce an interactive
art CIR application, aka.ms/mosaic, and provide more details in Section 3.7. In Section A.2
of the Appendix we also provide additional examples and representative samples.

3.7 The MosAIc Web Application

As an application of CIR for the public, we introduce MosAIc (aka.ms/mosaic), a website
that allows users to explore art matches conditioned on culture and medium. Our website
aims to show how conditional image retrieval can find surprising and uncanny pairs of
artworks that span millennia. We also aim to make it easy for interested users to find new
artworks in cultures they might not think to explore during a physical museum visit. Using
the MosAIc application, users can choose from a wide array of example objects to use as
conditional search queries as shown in the left panel of Figure 3.5. Users can select from
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Figure 3.5: Using the MosAIc web application (aka.ms/mosaic). After watching a short video
explaining the app, users can select a work of art to find conditional matches with (left).
Users can find conditional matches for a variety of different cultures and media (middle). To
further explore the collection, users can search for new query objects using a conventional
search index (right). Users can also construct chains of conditional matches using the “Use
match as query” button below the main matches.

an array of different cultures and media to condition their searches as in Figure 3.5 middle.
Selecting a specific medium or culture, allows the user to browse the top conditional matches
in that category and use these matches as new query images. This enables traversing the
collection using conditional searches to find relevant content in different areas of the collection.
Additionally, for users who want to use a specific work of art as a starting point we have
added a conventional text based search engine to quickly find specific works relating to a
keyword as in Figure 3.5 right.

The mosaic application combines a React [43] front-end with a back-end built from Azure
Kubernetes Service, Azure Search, and Azure App Services. Our front-end features responsive
design principles to support for mobile, tablet, desktop, and ultra-wide displays. We also
aim to use high-contrast design to make the application more accessible to the low-vision
community. To create the conditional search index, we featurize the combines Metropolitan
Museum of Art and Rijksmuseum open access collections using ResNet50 from torchvision
[44]. We then add these features to a Conditional Ball tree for real-time conditional retrieval
and deploy this method as a RESTful service on Azure Kubernetes Service. Additionally,
we store image metadata, automatically generated image captions, and detected objects in
an Azure Search index which allows querying for additional information, and supports text
search. To add captions and detected objects to over 500k images we use the Cognitive
Services for Big Data [6].

3.8 Evaluating CIR Quality

Though finding connections between art is of great importance to the curatorial and historical
communities, it is difficult to measure a system’s success on this dataset as there are no
ground truth on which images should match. To understand the behavior of CIR systems
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quantitatively we investigate datasets with known content images aligned across several
different “styles” or subsets to retrieve across. More specifically, if the conditioning information
represents the image “style” and the features represent the “content”, CIR should find an
image with the same content, but constrained to the style of the conditioner, such as “Ceramic”
or “Egyptian” in Figure 3.1. Through this lens, CIR systems can act as “non-parametric”
style transfer systems. This approach differs from existing style transfer and visual analogy
methods in the literature [36, 45] as it does not generate new images, but rather it finds
analogous images within an existing corpora.

To this end, we apply CIR to the FEI face database of 2800 high resolution faces across
200 participants and 14 poses, emotions, and lighting conditions. We also introduce two new
datasets with known style and content annotations: the ConditionalFont and ConditionalArt
datasets. The ConditionalFont dataset contains 15687 32× 32 grayscale images of 63 ASCII
characters (content) across 249 fonts (style). The ConditionalArt dataset contains 1,000,000
color images of varying resolution formed by stylizing 5000 content images from the MS
COCO [46] dataset with 200 style images from the WikiArt dataset [47] using an Adaptive
Instance Normalization [36]. Although this dataset is “synthetic”, [48] show that neural style
transfer methods align with human intuition. We show representative samples from each
dataset in Figure 3.4.

With these datasets it’s possible to measure how CIR features, metrics, and query strategies
affect CIR’s ability to match content across styles. To measure retrieval accuracy, we sampled
10000 random query images. For each random query image, we use CIR to retrieve the query
image’s KNNs conditioned on a random style. We then check whether any retrieved images
have the same content as the original query image. In Table 3.2, we explore how the choice
of featurization algorithm affects CIR systems. All methods outperform the random baseline
of Table 3.2, indicating that they are implicitly performing non-parametric content-style
transfer. DenseNet (DN) [49] and Squeezenet (SN) [50] tend to perform well across all
datasets. CIR performs well across all three tasks without fine tuning to the structure of the
datasets, indicating that this approach can apply to other zero-shot image-to-image matching
problems.

3.9 Fast CKNN with Adaptive Tree Pruning

In Section 3.8 we have shown that CIR is semantically meaningful in several different contexts,
but the question remains as to whether this approach affords an efficient implementation that
can scale to large datasets with low latency. Conventional IR systems scale to this setting
using dedicated data-structures such as trees, spatial hashes, or graphs. There are a wide
variety of strategies with provable guarantees in the unconditional setting, but it is not known
if existing data-structures can apply naturally to the conditional setting. In this work we
focus on extending tree-based methods to the conditional setting. Tree-based methods are
some of the only methods that guarantee exact KNN retrieval, and there are already several
theoretical results on the performance of these methods [17, 51]. In particular, [17] show that
RandomProjection-Max (RP) trees can adapt to the intrinsic dimensionality of the data and
prove bounds that demonstrate the effectiveness of the data-structure. [51] continue this
line of reasoning and prove a packing lemma using a bound on the aspect ratio of RP tree
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Figure 3.6: Dynamic tree pruning based CIR architecture. The user specified condition, P ∨Q,
is translated to an inverted index query and the result is used to prune the unconditional
KNN tree where nodes are colored based on which conditions they contain. This pruned tree
accelerates conditional search for any subset by reducing the number of nodes considered in
tree traversal.

cells. These works show that RP trees are effective at capturing the geometry of the training
data. Our aim is to show that they also capture the geometry of subsets of the training data
through their sub-trees. More specifically, we show that for any subset of the training data,
one can derive probabilistic bound the number of nodes in the tree that contain this subset.
More formally:

Theorem 3.9.1. Suppose an RPTree-Max, T , is built using a dataset X ⊂ RD, of diameter
W , with doubling dimension ≤ d. Further suppose T is balanced with a cell-size reduction
rate bounded above by γ. Let S ⊆ X be a subset of the dataset used to build the tree and B
a finite set of radius R > 0 balls that cover S. For every 0 < ϵ < 1 there exists a constant,
c > 0, such that with probability > 1− ϵ the fraction of cells that contain points within S is
bounded above by |B|2−logγ(W/R′) where R′ = cRd

√
d log(d)

We point readers to [51], for the precise definition of an RPTree, cell-size, and the doubling
dimension. To sketch the proof, we first generalize an aspect bound from [51] to show that,
with high probability, small radius balls can be completely inscribed within small radius
RP tree cells. Because it takes several levels before the tree’s cells shrink to this size, we
can bound this cell’s depth and thus the size of its sub-tree relative to the full tree. By
considering a collection of balls that cover our target subset, we arrive at the final bound.
See section A.3 of the Appendix for a full proof.

This theorem not only shows that sub-trees of an RP tree capture the geometry of training
dataset subsets, but also points to a method to improve the speed of CKNN. Namely, we
can prune tree nodes that do not hold points within our target subset prior searching for
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input :A point, q, a condition, S ⊆ X , a tree, root, and an inverted index, I
output :Closest point, p∗ ∈ S, to q
validNodes←

⋃
s∈S I(s); p

∗ ← null
def SearchNode(n):

if n ∈ validNodes then
if n is a leaf node then

p← closest point in S
if d(p, q) < d(p∗, q) then

p∗ ← p
end

else
potentials← children of n which could hold a closer point
for child in potentials do

SearchNode(child)
end

end
end

SearchNode(root); return p∗
Algorithm 1: Querying a CKNN Tree

conditional neighbors. We diagram this procedure in Figure 3.6, and provide pseudo-code
in Algorithm 1. We now turn our attention to quickly computing the proper sub-trees for
each subset of the data. To this end, one can use an inverted index [52], I, that maps points,
x ∈ X to the collection of their dominating nodes, I(x) = {n : x below node n}. One can
compute the subset of nodes that remain after pruning by taking the union of dominating
nodes as shown in the first line of Algorithm 1 and in the illustration of the full search
architecture in Figure 3.6. Evaluating the predicate on points within leaf nodes can also
reduce computation.

Additionally, if the predicates of interest have additional structure, such as representing
class labels, one can define a smaller class-based inverted index, Iclass(c) which maps a class
label, c, to the set of dominating nodes. For these predicates, union and intersection operators
commute through the class-based inverted index:

I(Sa ∩ Sb) = Iclass(a) ∩ Iclass(b)
I(Sa ∪ Sb) = Iclass(a) ∪ Iclass(b)

(3.1)

where Sa is the subset of points with label a. This principle speeds a broad class of queries
and accelerates document retrieval frameworks like ElasticSearch [53] and its backbone,
Lucene [54]. We stress that this approach does not use Lucene to filter images or documents
directly, but rather to filter nodes of a KNN retrieval data-structure at query time. This
enables a rich “predicate push-down“ [55, 56] logic for KNN methods independent of how
the tree splits points (Ball, Hyperplane, Cluster), the branching factor, and the topology of
the tree. It also applies to ensembles of trees and to multi-probe LSH methods by pruning
hash buckets. We note that our proposed indexing structure is small compared to the size
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Figure 3.7: Query time of Conditional KNN approaches. Our approach (Conditional) achieves
query performance approaching that of an tree recreated specifically for each query (Dedicated)
without the expensive re-creation cost, and does not perform poorly with small conditions
like “Query then Filter” strategies. Furthermore, our method accelerates queries across much
smaller subsets than the reconfiguration strategy of [13]. Please see Section 3.13 and 3.9 for
method details.

of the underlying dataset, and unconditional KNN tree, and provide an analysis of memory
footprints in Table 3.1.

3.10 Performance

In Figure 3.7, we show the relative performance of several strategies for CIR on 488k
Resnet50-featurized images (dim = 2048) from the combined MET and Rijksmusem open-
access collections with a randomly chosen test set (n = 1000). We condition on artwork
media, culture, and several combinations of these to create a variety of condition sizes. We
measure the speedup compared to a vectorized Brute-Force search using NumPy arrays [57].
We implement CKNN methods with respect to one of the most used implementations of
KNN, Sci-kit Learn’s Ball Tree algorithm [58]. We compare our approach (Conditional)
to, the standard “query-then-filter” approach, and adaptive switching to brute force search
(Reconfigured) [13]. Finally, we compare to a “best-case” scenario of a KNN data-structure
pre-computed for every subset (Dedicated). Though in practice it is often impossible to
make an index for each subset, this setting provides an upper bound on the performance
of any approach. Our analysis shows that adaptive pruning (Conditional) outperforms
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Figure 3.8: (a): Visualization of the RCD between several example distributions and a
standard normal of “real” data (n = 50k). Upper plots show generated distributions, and
bottom plots show the “real” distribution colored by the RCD induced by a CKNN Tree.
Even though these datasets are identical under the popular Frechét inception distance (FID),
the RCD detects areas where generated data over (blue) and under (red) samples the real
data. (b): Nodes of a CKNN tree (Center node is the root) colored by statistically significant
deviations of RCD from 1 (p < 0.01). This shows widespread differences between GAN
outputs and true data. Red nodes represent areas where the GAN under samples the empirical
distribution, and blue nodes over-sample. High discrepancy nodes a and b from Figure 3.9
are annotated.

other approaches and is close to optimal for large subsets of the dataset. Additionally, the
performance of the “Query-then-filter” strategy quickly degrades for small subsets of the
dataset as expected. Our approach is also compatible with prior work on adaptively switching
to brute force and allows one to set the “switch-point” over 10x lower. We also note that
these results hold with randomized conditions, and across other similar datasets.

Finally, we stress that the goal of this work is not to make the fastest unsupervised
KNN method, but rather to evaluate generic strategies to transform these approaches to the
conditional setting. There is a considerable body of work on fast, approximate, unconditional
KNN methods which often outperform Scikit Learn’s exact retrieval algorithms. We point
readers to [26] for more details. We stress that exhaustive benchmarking of unconditional KNN
indices and approaches is outside the scope of this work. For implementation, experimentation,
environment, and computing details please see Section 3.13.

3.10.1 Implementation

We implement adaptive tree pruning for the existing Ball Tree and KD tree implementations
in the popular SciKit-learn framework. Our implementation supports exact retrieval with
several metrics, OpenMP parallelization [59], and Cython acceleration[60]. We also provide
accelerations such as dense bit-array set operations, and caching node subsets on repeated
conditioner queries. For larger scale datasets, we contribute a Spark based implementation of
a Conditional Ball Tree to Microsoft ML for Apache Spark [7, 61].
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To enable integration with differentiable architectures common in the community, we pro-
vide a high-throughput, PyTorch module [62] for CIR. This implementation is fundamentally
brute force but uses Einstein-summation to retrieve conditional neighbors for multiple queries
and multiple conditions simultaneously, and can increase throughput by over 100× compared
to naive PyTorch implementations.

3.11 Limitations

This work does not aim to create the fastest KNN algorithm, but rather presents a formally
motivated technique to speed up existing tree-based KNN methods in the conditional setting.
KNN retrieval chooses some items significantly more than others, due to effects such as the
“hubness problem” and we direct readers to [63] for possible solutions. We present additional
diversity reducing geometries in Section A.1 of the Appendix. Our approach does not modify
the KNN construction, simply prunes it afterwards. This may not be the most efficient
solution when conditioner sizes are small, but it is orders of magnitude faster than recreating
the tree. We also note that the performance of our conditional KNN methods are dependent
on the underlying unconditional KNN tree, which often performs better on datasets with
smaller intrinsic dimension.

3.12 Discovering “Blind Spots” in GANs

Efficient high-dimensional KNN search data-structures adapt to the geometry and intrinsic
dimensionality of the dataset [17, 51]. Moreover, some recent KNN methods use approaches
from unsupervised learning like hierarchical clustering [64] and slicing along PCA directions
[28]. In this light, CKNN trees allow us to measure and visualize the “heterogeneity” of
conditioning information within a larger dataset. More specifically, by analyzing the relative
frequency of labels within the nodes of a CKNN tree, one can find areas with abnormally
high and low label density. More formally, we introduce the Relative Conditioner Density
(RCD) to measure the degree of over or under representation of a class c with corresponding
subset Sc ⊆ X , at node n in the KNN tree:

RCD(n, c) =
|n ∩ Sc|
|n|

|X |
|Sc|

(3.2)

Here, |n| is the number of points below node n in the tree. The RCD measures how
much a node’s empirical distribution of labels differs from that of the full dataset. RCD > 1
occurs when the node over-represents class c, and RCD < 1 occurs when the node under-
represents a class, c. We apply this statistic to understand how samples from generative
models, such as image-based GANs, differ from true data. In particular, one can form a
conditional tree containing true data and generated samples, each with their own classes, ct
and cg respectively. In this context, nodes with RCD(·, cg)≪ 1 are regions of space where
the network under-represents the real dataset. To illustrate this effect, Figure 3.8a shows
several simple 2d examples. Even though these datasets are identical with respect to the
Fréchet Distance [65], coloring points based on their parent node RCD’s can highlight areas
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Figure 3.9: Samples from two statistically significant nodes from Figure 3.8. Images are
randomly chosen and representative of those found at the node. Almost every real image in
Node a contains microphones whereas no GAN generated outputs could create a microphone.
Node b shows a clear bias towards brimmed hats, and the GAN samples have significant
visual artifacts.

of over and under sampling of the true distribution by each “generated” distribution. In
Figure 3.8b, we form a CKNN tree on samples from a trained Progressive GAN [66] and it’s
training dataset, CelebA HQ [67]. Coloring the nodes by RCD reveals a considerable amount
of statistically significant structural differences between the two distributions. By simply
thresholding the RCD (< 0.6), we find types of images that GANs struggle to reproduce. We
show samples from two low-RCD nodes in Figure 3.9 and also note their location in Figure
3.8b. Within these nodes, Progressive GAN struggles to generate realistic images of brimmed
hats and microphones. Though we do not focus this work on thoroughly investigating issues
of diversity in GANs, this suggests GANs have difficulty representing data that is not in the
majority. This aligns with the findings of [68], without requiring GAN inversion, additional
object detection labels, or a semantic segmentation ontology. Furthermore, we note that
the FID cannot capture the full richness of why two distributions differ, as this metric just
measures differences between high dimensional means and co-variances. Using CKNN trees
can offer more flexible and interpretable ways to understand the differences between two high
dimensional distributions.

3.13 Experimental Details

All experiments use an Ubuntu 16.04 Azure NV24 Virtual Machine with Python 3.7 and
scikit-learn v0.22.2 [58]. We use scikit-learn’s Ball Tree and KD Tree and use numpy v1.18.1
[57] for brute force retrieval. For query-then-filter strategies we first retrieve 50 points, then
increase geometrically (x5) if the query yeilds no valid matches. To form image features
for Table 3.2, we use trained networks from torchvision v0.6 [44]. In particular, we use
ResNet50 (RN50) [34], ResNet101 (RN101), MobileNetV2 (MN) [69], SqueezeNet (SN) [50],
DenseNet (DN) [49], ResNeXt (RNext) [70], DeepLabV3 ResNet101 (dlv3101) [71], and Mask
R-CNN (MRCNN) [72]. Features are taken from the penultimate layer of the backbone, and
the matches of Table 3.2 are computed with respect to cosine distance. We use trained a
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Progressive GAN from the open-source Tensorflow implementation accompanying [66].

3.14 Related Work

Image retrieval and nearest neighbor methods have been thoroughly studied in the literature,
but we note that the conditional setting has only received attention recently. There are
several survey works on KNN retrieval, but they only mention unconditional varieties [33,
73]. [74] has studied the mathematical properties of conditional nearest neighbor classifiers
but works primarily with graph based methods as opposed to trees. They do not apply this
to modern deep features and do not aim to improve query speed. There are a wide variety
featurization strategies for IR systems. Gordo et. al [20] learn features optimized for IR.
Siamese networks such as FaceNet embed data using tuples of two data and a similarity
score and preserving this similarity in the embedding [24, 75]. Features from these methods
could improve CIR systems. Conditional Similarity Networks augment tuple embedding
approaches with the ability to handle different notions of similarity with different embedding
dimensions [76]. This models conditions as similarities but does not generically restrict the
search space of retrieved images to match a user’s query. These features have potential to
yield neighbor trees that, when pruned, have a similar structure and performance to dedicated
trees. Sketch-based IR uses line-drawings as query-images but does not aim to restrict the set
of candidate images generically [77]. Style transfer [78] and visual analogies [79] yield results
like our art exploration tool but generate the analogous images rather than retrieve them
from an existing corpus. [80] split IR systems into conditional subsystems, but do not tackle
generic conditioners or provide experimental evaluation. [81] create an IR system conditioned
on text input, but do not address the problem of generically filtering results. [82] and [83]
respectively learn and use a hierarchy of concepts concurrently with IR features, which could
be a compelling way to learn useful conditions for a Conditional IR system.

3.15 Chapter Conclusion

We have shown that Conditional Image Retrieval yields new ways to find visually and
semantically similar images across corpora. We presented a novel approach for discovering
hidden connections in large corpora of art and have creates an interactive web application,
MosAIc to allow the public to explore the technique. We have shown that CIR performs
non-parametric style transfer on the FEI faces and two newly introduced datasets. We proved
a bound on the number of nodes that can be pruned from RandomProjection trees when
focusing on subsets of the training data and used this insight to develop a general strategy
for generalizing tree-based KNN methods to the conditional setting. We demonstrated that
this approach speeds conditional queries and outperforms baselines. Lastly, we showed that
CKNN data-structures can find and quantify subtle discrepancies between high dimensional
distributions and used this approach to identify several “blind spots” in the ProGAN network
trained on CelebA HQ.
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Chapter 4

STEGO: Fully Unsupervised Semantic
Segmentation by Distilling Relationships
between Visual Representations

Figure 4.1: Unsupervised semantic segmentation predictions on the CocoStuff [84] 27 class
segmentation challenge. Our method, STEGO, does not use labels to discover and segment
consistent objects. Unlike the prior state of the art, PiCIE [85], STEGO’s predictions are
consistent, detailed, and do not omit key objects.

4.1 Website and Video

For a quick video overview and blog post of this chapter, see https://mhamilton.net/stego.html
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4.2 Chapter Summary

In this chapter we show that relationships between features encode much more than just
similarity between very different images (Chapter 3). Amazingly, this chapter shows that
relationships between features can be used to rediscover visual objects and classify every pixel
of the world without any human guidance or labels. We focus on the task of Unsupervised
semantic segmentation, which aims to discover and localize semantically meaningful categories
within image corpora without any form of annotation. To solve this task, algorithms must
produce features for every pixel that are both semantically meaningful and compact enough
to form distinct clusters. Unlike previous works which achieve this with a single end-
to-end framework, we propose to separate feature learning from cluster compactification.
Empirically, we show that current unsupervised feature learning frameworks already generate
dense features whose correlations are semantically consistent. This observation motivates us
to design STEGO (Self-supervised Transformer with Energy-based Graph Optimization), a
novel framework that distills unsupervised features into high-quality discrete semantic labels.
At the core of STEGO is a novel contrastive loss function that encourages features to form
compact clusters while preserving their relationships across the corpora. STEGO yields a
significant improvement over the prior state of the art, on both the CocoStuff (+14 mIoU)
and Cityscapes (+9 mIoU) semantic segmentation challenges.

4.3 Introduction

In Chapter 3 we showed that relationships between “global” image representations have
the power to discover hidden connections in the visual arts, and “blind spots” in image
generation systems. In this chapter we show that by examining relationships between “dense”
or “local” image features we can automatically discover and segment visual objects from
entirely unlabeled images. The key intuition behind this idea is that while the global features
of Chapter 3 encode a global notion of whether two images are semantically related, the
“local” features of that network tell us when two different pixels belong to a similar object.
This phenomena is entirely emergent in self-supervised algorithms like DINO [86], and gives
us access to something almost as good as a supervised label per pixel. In this setting we know
precisely how related two pixels are, and this relationship aligns closely with human intuitions
and labels. This chapter explores how we can take this signal, and “distill” it into a small
collection of object categories and pixel-level annotations with respect to those categories. In
effect, this chapter shows that feature relationships allow us to discover the hidden semantics
of natural images entirely without a human in the loop.

Semantic segmentation is the process of classifying each individual pixel of an image
into a known ontology. Although semantic segmentation models can detect and delineate
objects at a much finer granularity than classification or object detection systems, these
systems are hindered by the difficulties of creating labeled training data. In particular,
segmenting an image can take over 100× more effort for a human annotator than classifying
or drawing bounding boxes [87]. Furthermore, in complex domains such as medicine, biology,
or astrophysics, ground-truth segmentation labels may be unknown, ill-defined, or require
considerable domain-expertise to provide [88].
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Recently, several works introduced semantic segmentation systems that could learn from
weaker forms of labels such as classes, tags, bounding boxes, scribbles, or point annotations
[89–92]. However, comparatively few works take up the challenge of semantic segmentation
without any form of human supervision or motion cues. Attempts such as Independent
Information Clustering (IIC) [93] and PiCIE [85] aim to learn semantically meaningful
features through transformation equivariance, while imposing a clustering step to improve
the compactness of the learned features.

In contrast to these previous methods, we utilize pre-trained features from unsupervised
feature learning frameworks and focus on distilling them into a compact and discrete structure
while preserving their relationships across the image corpora. This is motivated by the
observation that correlations between unsupervised features, such as ones learned by DINO
[86], are already semantically consistent, both within the same image and across image
collections.

As a result, we introduce STEGO (Self-supervised Transformer with Energy-based
Graph Optimization), which is capable of jointly discovering and segmenting objects without
human supervision. STEGO distills pretrained unsupervised visual features into semantic
clusters using a novel contrastive loss. STEGO dramatically improves over prior art and is a
considerable step towards closing the gap with supervised segmentation systems. We include
a short video detailing the work at https://aka.ms/stego-video. Specifically, we make the
following contributions:

• Show that unsupervised deep network features have correlation patterns that are largely
consistent with true semantic labels.

• Introduce STEGO, a novel transformer-based architecture for unsupervised semantic
segmentation.

• Demonstrate that STEGO achieves state of the art performance on both the CocoStuff
(+14 mIoU) and Cityscapes (+9 mIoU) segmentation challenges.

• Justify STEGO’s design with an ablation study on the CocoStuff dataset.

4.4 Related Work

Self-supervised Visual Feature Learning Learning meaningful visual features without
human annotations is a longstanding goal of computer vision. Approaches to this problem
often optimize a surrogate task, such as denoising [94], inpainting [95], jigsaw puzzles,
colorization [96], rotation prediction [97], and most recently, contrastive learning over multiple
augmentations [98–101]. Contrastive learning approaches, whose performance surpass all
other surrogate tasks, assume visual features are invariant under a certain set of image
augmentation operations. These approaches maximize feature similarities between an image
and its augmentations, while minimizing similarity between negative samples, which are
usually randomly sampled images. Some notable examples of positive pairs include temporally
adjacent images in videos [101], image augmentations [99, 100], and local crops of a single
image [98]. Many works highlight the importance of large numbers of negative samples
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during training. To this end [102] propose keeping a memory bank of negative samples and
[100] propose momentum updates that can efficiently simulate large negative batch sizes.
Recently some works have aimed to produce spatially dense feature maps as opposed to a
single global vector per image. In this vein, VADeR [103] contrasts local per-pixel features
based on random compositions of image transformations that induce known correspondences
among pixels which act as positive pairs for contrastive training. Instead of trying to learn
visual features and clustering from scratch, STEGO treats pretrained self-supervised features
as input and is agnostic to the underlying feature extractor. This makes it easy to integrate
future advances in self-supervised feature learning into STEGO.

Unsupervised Semantic Segmentation Many unsupervised semantic segmentation
approaches use techniques from self-supervised feature learning. IIC [93] maximizes mutual
information of patch-level cluster assignments between an image and its augmentations.
Contrastive Clustering [104], and SCAN [105] improve on IIC’s image clustering results
with supervision from negative samples and nearest neighbors but do not attempt semantic
segmentation. PiCIE [85] improves on IIC’s semantic segmentation results by using invariance
to photometric effects and equivariance to geometric transformations as an inductive bias. In
PiCIE, a network minimizes the distance between features under different transformations,
where the distance is defined by an in-the-loop k-means clustering process. SegSort [106]
adopts a different approach. First, SegSort learns good features using superpixels as proxy
segmentation maps, then uses Expectation-Maximization to iteratively refine segments over a
spherical embedding space. In a similar vein, MaskContrast [107] achieves promising results
on PascalVOC by first using an off-the-shelf saliency model to generate a binary mask for
each image. MaskContrast then contrasts learned features within and across the saliency
masks. In contrast, our method focuses refining existing pretrained self-supervised visual
features to distill their correspondence information and encourage cluster formation. This is
similar to the work of [108] who show that low rank factorization of deep network features
can be useful for unsupervised co-segmentation. We are not aware of any previous work that
achieves the goal of high-quality, pixel-level unsupervised semantic segmentation on large
scale datasets with diverse images.

Visual Transformers Convolutional neural networks (CNNs) have long been state of
the art for many computer vision tasks, but the nature of the convolution operator makes
it hard to model long-range interactions. To circumvent such shortcomings, [109, 110] use
self-attention operations within a CNN to model long range interactions. Transformers
[111], or purely self-attentive networks, have made significant progress in NLP and have
recently been used for many computer vision tasks [86, 112–114]. Visual Transformers
(ViT) [111] apply self-attention mechanisms to image patches and positional embeddings in
order to generate features and predictions. Several modifications of ViT have been proposed
to improve supervised learning, unsupervised learning, multi-scale processing, and dense
predictions. In particular, DINO [86] uses a ViT within a self-supervised learning framework
that performs self-distillation with exponential moving average updates. [86] show that
DINO’s class-attention can produce localized and semantically meaningful salient object
segmentations. Our work shows that DINO’s features not only detect salient objects but can
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be used to extract dense and semantically meaningful correspondences between images. In
STEGO, we refine the features of this pre-trained backbone to yield semantic segmentation
predictions when clustered. We focus on DINO’s embeddings because of their quality but
note that STEGO can work with any deep network features.

4.5 Methods

4.5.1 Feature Correspondences Predict Class Co-Occurrence

Recent progress in self-supervised visual feature learning has yielded methods with powerful
and semantically relevant features that improve a variety of downstream tasks. Though most
works aim to generate a single vector for an image, many works show that intermediate dense
features are semantically relevant [108, 115, 116], a topic we will treat in theoretical detail
in Chapter 7. To use this information, we focus on the “correlation volume” [117] between
the dense feature maps. For convolutional or transformer architectures, these dense feature
maps can be the activation map of a specific layer. Additionally, the Q, K or V matrices
in transformers can also serve as candidate features, though we find these attention tensors
do not perform as well in practice. More formally, let f ∈ RCHW , g ∈ RCIJ be the feature
tensors for two different images where C represents the channel dimension and (H,W ), (I, J)
represent spatial dimensions. We form the feature correspondence tensor:

Fhwij :=
∑
c

fchw
|fhw|

gcij
|gij|

, (4.1)

whose entries represent the cosine similarity between the feature at spatial position (h,w)
of feature tensor f and position (i, j) of feature tensor g. In the special case where f = g
these correspondences measure the similarity between two regions of the same image. We
note that this quantity appears often as the “cost-volume” within the optical flow literature,
and Chapter 7 will show this acts a higher-order generalization of Class Activation Maps
[116] for contrastive architectures and visual search engines [115]. By examining slices of the
correspondence tensor, F , at a given (h,w) we are able to visualize how two images relate
according the featurizer. For example, Figure 4.2 shows how three different points from the
source image (shown in blue, red, and green) are in correspondence with relevant semantic
areas within the image and its K-nearest neighbors with respect to the DINO [86] as the
feature extractor.

This feature correspondence tensor not only allows us to visualize image correspondences
but is strongly correlated with the true label co-occurrence tensor. In particular, we can
form the ground truth label co-occurrence tensor given a pair of ground-truth semantic
segmentation labels k ∈ CHW , l ∈ CIJ where C represents the set of possible classes:

Lhwij :=

{
1, if lhw = kij

0, if lhw ̸= kij

By examining how well the feature correspondences, F , predict the ground-truth label
co-occurrences, L, we can measure how compatible the features are with the semantic
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Figure 4.2: Feature correspondences from DINO. Cor-
respondences between the source image (left) and the
target images (middle and right) are plotted over the
target images in the respective color of the source point
(crosses in the left image). Feature correspondences can
highlight key aspects of shared semantics within a single
image (middle) and across similar images such as KNNs
(right)

Figure 4.3: Precision recall
curves show that feature self-
correspondences strongly predict
true label co-occurrence. DINO
outperforms MoCoV2 and a CRF
kernel, which shows its power as an
unsupervised learning signal.

segmentation labels. More specifically we treat the feature correspondences as a probability
logit and compute the average precision when used as a classifier for L. This approach not
only acts as a quick diagnostic tool to determine the efficacy of features, but also allows us to
compare with other forms of supervision such as the fully connected Conditional Random
Field (CRF) [118], which uses correspondences between pixels to refine low-resolution label
predictions. In Figure 4.3 we plot precision-recall curves for the DINO backbone, the MoCoV2
backbone, the CRF Kernel, and our trained STEGO architecture. Interestingly, we find
that DINO is already a spectacular predictor of label co-occurrence within the Coco stuff
dataset despite never seeing the labels. In particular, DINO recalls 50% of true label
co-occurrences with a precision of 90% and significantly outperforms both MoCoV2 feature
correspondences and the CRF kernel. One curious note is that our final trained model is a
better label predictor than the supervisory signal it learns from. We attribute this to the
distillation process discussed in Section 4.5.2 which amplifies this supervisory signal and
drives consistency across the entire dataset. Finally, we stress that our comparison to ground
truth labels within this section is solely to provide intuition about the quality of feature
correspondences as a supervisory signal. We do not use the ground truth labels to
tune any parameters of STEGO.

4.5.2 Distilling Feature Correspondences

In Section 4.5.1 we have shown that feature correspondences have the potential to be a quality
learning signal for unsupervised segmentation. In this section we explore how to harness
this signal to create pixel-wise embeddings that, when clustered, yield a quality semantic
segmentation. In particular, we seek to learn a low-dimensional embedding that “distills” the
feature correspondences. To achieve this aim, we draw inspiration from the CRF which uses
an undirected graphical model to refine noisy or low-resolution class predictions by aligning
them with edges and color-correlated regions in the original image.
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More formally, let N : RC′H′W ′ → RCHW represent a deep network backbone, which maps
an image x with C ′ channels and spatial dimensions (H ′,W ′) to a feature tensor f with C
channels and spatial dimensions (H,W ). In this work, we keep this backbone network frozen
and focus on training a light-weight segmentation head S : RCHW → RKHW , that maps our
feature space to a code space of dimension K, where K < C. The goal of S is to learn a
nonlinear projection, S(f) =: s ∈ RKHW , that forms compact clusters and amplifies the
correlation patterns of f .

To build our loss function let f and g be two feature tensors from a pair of images x,
and y and let s := S(f) ∈ RCHW and t := S(g) ∈ RCIJ be their respective segmentation
features. Next, using Equation 4.1 we compute a feature correlation tensor F ∈ RHWIJ from
f and g and a segmentation correlation tensor S ∈ RHWIJ from s and t. Our loss function
aims to push the entries of s and t together if there is a significant coupling between two
corresponding entries of f and g. As shown in Figure 4.4, we can achieve this with a simple
element-wise multiplication of the tensors F and S:

Lsimple−corr(x, y, b) := −
∑
hwij

(Fhwij − b)Shwij (4.2)

Where b is a hyper-parameter which adds uniform “negative pressure” to the equation to
prevent collapse. Minimizing L with respect to S encourages elements of S to be large
when elements of F − b are positive and small when elements of F − b are negative. More
explicitly, because the elements of F and S are cosine similarities, this exerts an attractive or
repulsive force on pairs of segmentation features with strength proportional to their feature
correspondences. We note that the elements of S are not just encouraged to equal the
elements of F but rather to push to total anti-alignment (−1) or alignment (1) depending on
the sign of F − b.

In practice, we found that Lsimple−corr is sometimes unstable and does not provide enough
learning signal to drive the optimization. Empirically, we found that optimizing the seg-
mentation features towards total anti-alignment when the corresponding features do not
correlate leads to instability, likely because this increases co-linearity. Therefore, we optimize
weakly-correlated segmentation features to be orthogonal instead. This can be efficiently
achieved by clamping the segmentation correspondence, S, at 0, which dramatically improved
the optimization stability.

Additionally, we encountered challenges when balancing the learning signal for small
objects which have concentrated correlation patterns. In these cases, Fhwij − b is negative
in most locations, and the loss drives the features to diverge instead of aggregate. To make
the optimization more balanced, we introduce a Spatial Centering operation on the feature
correspondences:

F SC
hwij := Fhwij −

1

IJ

∑
i′j′

Fhwi′j′ . (4.3)

Together with the zero clamping, our final correlation loss is defined as:

Lcorr(x, y, b) := −
∑
hwij

(F SC
hwij − b)max(Shwij, 0). (4.4)
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Figure 4.4: High-level overview of the STEGO architecture at train and prediction steps.
Grey boxes represent three different instantiations of the main correspondence distillation
loss which is used to train the segmentation head.

We demonstrate the positive effect of both the aforementioned “0-Clamp” and “SC” modifica-
tions in the ablation study of Table 4.2.

4.5.3 STEGO Architecture

STEGO uses three instantiations of the correspondence loss of Equation 4.4 to train a
segmentation head to distill feature relationships between an image and itself, its K-Nearest
Neighbors (KNNs), and random other images. The self and KNN correspondence losses
primarily provide positive, attractive, signal and random image pairs tend to provide negative,
repulsive, signal. We illustrate this and other major architecture components of STEGO in
Figure 4.4.

STEGO is made up of a frozen backbone that serves as a source of learning feedback, and
as an input to the segmentation head for predicting distilled features. This segmentation
head is a simple feed forward network with ReLU activations [119]. In contrast to other
works, our method does not re-train or fine-tune the backbone. This makes our method very
efficient to train: it only takes less than 2 hours on a single NVIDIA V100 GPU card.

We first use our backbone to extract global image features by global average pooling
(GAP) our spatial features: GAP (f). We then construct a lookup table of each image’s
K-Nearest Neighbors according to cosine similarity in the backbone’s feature space. Each
training minibatch consists of a collection of random images x and random nearest neighbors
xknn. In our experiments we sample xknn randomly from each image’s top 7 KNNs. We also
sample random images, xrand, by shuffling x and ensuring that no image matched with itself.
STEGO’s full loss is:

L = λselfLcorr(x, x, bself ) + λknnLcorr(x, x
knn, bknn) + λrandLcorr(x, x

rand, brand) (4.5)
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Table 4.1: Comparison of unsupervised segmentation architectures on 27 class CocoStuff
validation set. STEGO significantly outperforms prior art in both unsupervised clustering
and linear-probe style metrics.

Unsupervised Linear Probe
Model Accuracy mIoU Accuracy mIoU

ResNet50 [121] 24.6 8.9 41.3 10.2
MoCoV2 [100] 25.2 10.4 44.4 13.2

DINO [86] 30.5 9.6 66.8 29.4
Deep Cluster [122] 19.9 - - -

SIFT [123] 20.2 - - -
[124] 23.1 - - -
[125] 24.3 - - -

AC [126] 30.8 - - -
InMARS [127] 31.0 - - -

IIC [93] 21.8 6.7 44.5 8.4
MDC [85] 32.2 9.8 48.6 13.3
PiCIE [85] 48.1 13.8 54.2 13.9

PiCIE + H [85] 50.0 14.4 54.8 14.8
STEGO (Ours) 56.9 28.2 76.1 41.0

Where the λ’s and the b’s control the balance of the learning signals and the ratio of positive
to negative pressure respectively. In practice, we found that a ratio of λself ≈ λrand ≈ 2λknn
worked well. The b parameters tended to be dataset and network specific, but we aimed to
keep the system in a rough balance between positive and negative forces. More specifically
we tuned the bs to keep mean KNN feature similarity at ≈ 0.3 and mean random similarity
at ≈ 0.0.

Many images within the CocoStuff and Cityscapes datasets are cluttered with small
objects that are hard to resolve at a feature resolution of (40, 40). To better handle small
objects and maintain fast training times we five-crop training images prior to learning KNNs.
This not only allows the network to look at closer details of the images, but also improves
the quality of the KNNs. More specifically, global image embeddings are computed for each
crop. This allows the network to resolve finer details and yields five times as many images to
find close matching KNNs from. Five-cropping improved both our Cityscapes results and
CocoStuff segmentations, and we detail this in Table 4.2.

The final components of our architecture are the clustering and CRF refinement step.
Due to the feature distillation process, STEGO’s segmentation features tend to form clear
clusters. We apply a cosine distance based minibatch K-Means algorithm [120] to extract
these clusters and compute concrete class assignments from STEGO’s continuous features.
After clustering, we refine these labels with a CRF to improve their spatial resolution further.
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4.5.4 Relation to Potts Models and Energy-based Graph Optimiza-
tion

Equation 4.4 can be viewed in the context of Potts models or continuous Ising models from
statistical physics [128, 129]. We briefly overview this connection, and point interested readers
to Section B.8 for a more detailed discussion. To build the general Ising model, let G = (V , w)
be a fully connected, weighted, and undirected graph on |V| vertices. In our applications
we take V to be the set of pixels in the training dataset. Let w : V × V → R represent an
edge weighting function. Let ϕ : V → C be a vertex valued function mapping into a generic
code space C such as the probability simplex over cluster labels P(L), or the K-dimensional
continuous feature space RK . The function ϕ can be a parameterized neural network, or a
simple lookup table that assigns a code to each graph node. Finally, we define a compatibility
function µ : C × C → R that measures the cost of comparing two codes. We can now define
the following graph energy functional:

E(ϕ) :=
∑

vi,vj∈V

w(vi, vj)µ(ϕ(vi), ϕ(vj)) (4.6)

Constructing the Boltzmann Distribution [130] yields a normalized distribution over the
function space Φ:

p(ϕ|w, µ) = exp(−E(ϕ))∫
Φ
exp(−E(ϕ′))dϕ′ (4.7)

In general, sampling from this probability distribution is difficult because of the often-
intractable normalization factor. However, it is easier to compute the maximum likelihood
estimate (MLE), argmaxϕ∈Φ p(ϕ|w, µ). In particular, if Φ is a smoothly parameterized space of
functions and ϕ and µ are differentiable functions, one can compute the MLE using stochastic
gradient descent (SGD) with highly-optimized automatic differentiation frameworks [131,
132]. In Section B.8 of the supplement we prove that the finding the MLE of Equation 4.7 is
equivalent to minimizing the loss of Equation 4.4 when |V | is the set of pixels in our image
training set, ϕ = S ◦ N , w is the cosine distance between features, and µ is cosine distance.
Like STEGO, the CRF is also a Potts model, and we use this connection to re-purpose the
STEGO loss function to create continuous, minibatch, and unsupervised variants of the CRF.
We detail this exploration in Section B.9 of the Supplement.

4.6 Experiments

We evaluate STEGO on standard semantic segmentation datasets and compare with current
state-of-the-art. We then justify different design choices of STEGO through ablation studies.
Additional details on datasets, model hyperparameters, hardware, and other implementation
details can be found in Section B.10 of the Supplement.

4.6.1 Evaluation Details

Datasets Following [85], we evaluate STEGO on the 27 mid-level classes of the CocoStuff
class hierarchy and on the 27 classes of Cityscapes. Like prior art, we first resize images to
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Figure 4.5: Comparison of ground truth labels (middle
row) and cluster probe predictions for STEGO (bottom
row) for images from the Cityscapes dataset.

Figure 4.6: Confusion matrix of
STEGO cluster probe predictions on
CocoStuff. Classes after the “vehicle”
class are “stuff” and classes before are
“things”. Rows are normalized to sum
to 1.

320 pixels along the minor axis followed by a (320 × 320) center crops of each validation
image. We use mean intersection over union (mIoU) and Accuracy for evaluation metrics.
Our CocoStuff evaluation setting originated in [93] and is common in the literature. Our
Cityscapes evaluation setting is adopted from [85]. The latter is newer and more challenging,
and thus fewer baselines are available. Finally we also compare on the Potsdam-3 setting fro
[93] in Section B.2 of the Appendix.

Linear Probe The first way we evaluate the quality of the distilled segmentation features is
through transfer learning effectiveness. As in [85, 107, 133], we train a linear projection from
segmentation features to class labels using the cross entropy loss. This loss solely evaluates
feature quality and is not part of the STEGO training process.

Clustering Unlike the linear probe, the clustering step does not have access to ground
truth supervised labels. As in prior art, we use a Hungarian matching algorithm to align
our unlabeled clusters and the ground truth labels for evaluation and visualization purposes.
This measures how consistent the predicted semantic segments are with the ground truth
labels and is invariant to permutations of the predicted class labels.

4.6.2 Results

We summarize our main results on the 27 classes of CocoStuff in Table 4.1. STEGO
significantly outperforms the prior state of the art, PiCIE, on both linear probe and clustering
(Unsupervised) metrics. In particular, STEGO improves by +14 unsupervised mIoU, +6.9
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unsupervised accuracy, +26 linear probe mIoU, and +21 linear probe accuracy compared
to the next best baseline. In Table 4.3, we find a similarly large improvement of +8.7
unsupervised mIoU and +7.7 unsupervised accuracy on the Cityscapes validation set. These
two experiments demonstrate that even though we do not fine-tune the backbone for these
datasets, DINO’s self-supervised weights on ImageNet [134] are enough to simultaneously
solve both settings. STEGO also outperforms simply clustering the features from unmodified
DINO, MoCoV2, and ImageNet supervised ResNet50 backbones. This demonstrates the
benefits of training a segmentation head to distill feature correspondences.

We show some example segmentations from STEGO and our baseline PiCIE on the
CocoStuff dataset in Figure 4.1. We include additional examples and failure cases in Sections
B.4 and B.5. We note that STEGO is significantly better at resolving fine-grained details
within the images such as the legs of horses in the third image from the left column of
Figure 4.1, and the individual birds in the right-most column. Though the PiCIE baseline
uses a feature pyramid network to output high resolution predictions, the network does not
attune to fine grained details, potentially demonstrating the limitations of the sparse training
signal induced by data augmentations alone. In contrast, STEGO’s predictions capture small
objects and fine details. In part, this can be attributed to DINO backbone’s higher resolution
features, the 5-crop training described in 4.5.3, and the CRF post-processing which helps to
align the predictions to image edges. We show qualitative results on the Cityscapes dataset in
Figure 4.5. STEGO successfully identifies people, street, sidewalk, cars, and street signs with
high detail and fidelity. We note that prior works did not publish pretrained models or linear
probe results on Cityscapes so we exclude this information from Table 4.3 and Figure 4.5.

To better understand the predictions and failures of STEGO, we include confusion matrices
for CocoStuff (Figure 4.6) and Cityscapes (Figure B.5 of the Supplement). Some salient
STEGO errors include confusing the “food” category from the CocoStuff “things”, and the
“food” category from CocoStuff “stuff”. STEGO also does not properly separate “ceilings”
from “walls”, and lacks consistent segmentations for classes such as “indoor”, “accessory”,
“rawmaterial” and “textile”. These errors also draw our attention to the challenges of evaluating
unsupervised segmentation methods: label ontologies can be arbitrary. In these circumstances
the divisions between classes are not well defined and it is hard to imagine a system that can
segment the results consistently without additional information. In these regimes, the linear
probe provides a more important barometer for quality because the limited supervision can
help disambiguate these cases. Nevertheless, we feel that there is still considerable progress
to be made on the purely unsupervised benchmark, and that even with the improvements of
STEGO there is still a measurable performance gap with supervised systems.

4.6.3 Ablation Study

To understand the impact of STEGO’s architectural components we perform an ablation
analysis on the CocoStuff dataset, and report the results in Table 4.2. We examine the
effect of using several different backbones in STEGO including MoCoV2, the ViT-Small, and
ViT-Base architectures of DINO. We find that ViT-Base is the best feature extractor of the
group and leads by a significant margin both in terms of accuracy and mIoU. We also evaluate
the several loss function and architecture decisions described in Section 4.5.3. In particular,
we explore clamping the segmentation feature correspondence tensor at 0 to prevent the
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Table 4.2: Architecture ablation study on the Co-
coStuff Dataset (27 Classes).

Arch. 0-
C

la
m

p
5-

C
ro

p
S
C

C
R

F

Unsup. Linear Probe
Acc. mIoU Acc. mIoU

MoCoV2 ✓ 48.4 20.8 70.7 26.5
ViT-S 34.2 7.3 54.9 15.6
ViT-S ✓ 44.3 21.3 70.9 36.8
ViT-S ✓ ✓ 47.6 23.4 72.2 36.8
ViT-S ✓ ✓ ✓ 47.7 24.0 72.9 38.4
ViT-S ✓ ✓ ✓ ✓ 48.3 24.5 74.4 38.3
ViT-B ✓ ✓ ✓ 54.8 26.8 74.3 39.5
ViT-B ✓ ✓ ✓ ✓ 56.9 28.2 76.1 41.0

Table 4.3: Results on the Cityscapes
Dataset (27 Classes). STEGO improves
significantly over all baselines in both
accuracy and mIoU.

Unsup.
Model Acc. mIoU
IIC [93] 47.9 6.4

MDC [85] 40.7 7.1
PiCIE [85] 65.5 12.3

STEGO (Ours) 73.2 21.0

negative pressure from introducing co-linearity (0-Clamp), five-cropping the dataset prior to
mining KNNs to improve the resolution of the learning signal (5-Crop), spatially centering the
feature correspondence tensor to improve resolution of small objects (SC), and Conditional
Random Field post-processing to refine predictions (CRF). We find that these modifications
improve both the cluster and linear probe evaluation metrics.

4.7 Chapter Conclusion

We have found that modern self-supervised visual backbones can be refined to yield state of
the art unsupervised semantic segmentation methods. We have motivated this architecture by
showing that correspondences between deep features are directly correlated with ground truth
label co-occurrence. We take advantage of this strong, yet entirely unsupervised, learning
signal by introducing a novel contrastive loss that “distills” the correspondences between
features. Our system, STEGO, produces low rank representations that cluster into accurate
semantic segmentation predictions. We connect STEGO’s loss to CRF inference by showing
it is equivalent to MLE in Potts models over the entire collection of pixels in our dataset.
We show STEGO yields a significant improvement over the prior state of the art, on both
the CocoStuff (+14 mIoU) and Cityscapes (+9 mIoU) semantic segmentation challenges.
Finally, we justify the architectural decisions of STEGO with an ablation study on the
CocoStuff dataset.
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Chapter 5

FeatUp: Improving the Resolution of any
Model by Upsampling Visual
Representations

Figure 5.1: FeatUp upsamples image features from any model backbone, adding spatial
resolution to existing semantics. High-res features can be learned either as a per-image
implicit network or a general-purpose upsampling operation; the latter is a drop-in module
to improve downstream dense prediction tasks.

5.1 Website and Video

For a quick video overview and blog post of this chapter, see https://mhamilton.net/featup.html

5.2 Chapter Summary

Chapters 3 and 4 present two applications that demonstrate the hidden power of deep features
to capture detailed semantics about our world without any reliance on human labels. More
generally, these deep features are a cornerstone of computer vision research, capturing image
semantics and enabling the community to solve downstream tasks even in the zero- or few-shot
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Figure 5.2: The FeatUp training architecture. FeatUp learns to upsample features through
a consistency loss on low resolution “views” of a model’s features that arise from slight
transformations of the input image.

regime. However, these features often lack the spatial resolution to directly perform dense
prediction tasks like segmentation and depth prediction because models aggressively pool
information over large areas. In this work, we introduce FeatUp, a task- and model-agnostic
framework to restore lost spatial information in deep features. We introduce two variants of
FeatUp: one that guides features with high-resolution signal in a single forward pass, and
one that fits an implicit model to a single image to reconstruct features at any resolution.
Both approaches are powered by analyzing how slight variations in an input image cause
deep representations to subtly change. In particular FeatUp uses a multi-view consistency
loss with deep analogies to NeRFs, to recover this missing spatial information without human
supervision. Our features retain their original semantics and can be swapped into existing
applications to yield resolution and performance gains even without re-training. We show
that FeatUp significantly outperforms other feature upsampling and image super-resolution
approaches in class activation map generation, transfer learning for segmentation and depth
prediction, and end-to-end training for semantic segmentation. Additionally, FeatUp can
be combined with the STEGO from Chapter 4 to dramatically improve the resolution and
quality of unsupervised semantic segmentation.

5.3 Introduction

Chapters 3 and 4 both show that relationships between deep features are the key to discovering
semantics from totally unlabeled datasets. More broadly in the community, considerable
effort has been made to develop methods to extract features from data modalities such as
vision [86, 123, 135–137], text [138–140], and audio [141, 142]. These features often form the
backbone of different methods, including classification [143], weakly-supervised learning [144,
145], semantic segmentation [146], optical flow [117, 147], neural rendering [148], and more
recently, image generation [149]. Despite their immense success, deep features often sacrifice
spatial resolution for semantic quality. For example, ResNet-50 [150] produces 7× 7 deep
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features from a 224× 224 pixel input (32× resolution reduction). Even Vision Transformers
(ViTs) [151] incur a significant resolution reduction, making it challenging to perform dense
prediction tasks such as segmentation or depth estimation using these features alone.

To mitigate these issues, this chapter proposes FeatUp: a novel framework to improve
the resolution of any vision model’s features without changing their original “meaning” or
orientation. Our primary insight, inspired by 3D reconstruction frameworks like NeRF [152],
is that multiview consistency of low-resolution signals can supervise the construction of
high-resolution signals. More specifically, we learn high-resolution information by aggregating
low resolution views from a model’s outputs across multiple “jittered” (e.g. flipped, padded,
cropped) images. We aggregate this information by learning an upsampling network with a
multiview consistency loss. To put this in the broader context of this thesis: by analyzing
how deep representations change as we translate the input image we can upsample these
representations by up to 64× without any supervision. This not just improves the algorithms
of Chapter 4 and Chapter 6 to come, but can improve any algorithm built using deep
representations.

This chapter explores two architectures for upsampling: a single guided upsampling
feedforward network that generalizes across images, and an implicit representation overfit
to a single image. This feedforward upsampler is a parameterized generalization of a Joint
Bilateral Upsampling (JBU) filter [153] powered by a CUDA kernel orders of magnitude
faster and less memory-intensive than existing implementations. This upsampler can produce
high quality features aligned to object edges at a computational cost comparable to a few
convolutions. Our implicit upsampler draws a direct parallel to NeRF and overfits a deep
implicit network to a signal, allowing for arbitrary resolution features and low storage costs.
In both architectures, our upsampled features can be drop-in replacements in downstream
applications because our methods do not transform the semantics of the underlying features.
We show that these upsampled features can significantly improve a variety of downstream
tasks including semantic segmentation and depth prediction. Additionally, we show that
model explanation methods such as CAM can be made higher-resolution using upsampled
features. In particular, one can study a model’s behavior with much greater detail without
the need for complex methods based on relevance and information propagation [154, 155].
In summary, we include a short video describing FeatUp at aka.ms/featup and make the
following contributions:

• FeatUp: a new method to significantly improve the spatial resolution of any model’s
features, parametrized as either a fast feedforward upsampling network or an implicit
network.

• A fast CUDA implementation of Joint Bilateral Upsampling orders of magnitude more
efficient than a standard PyTorch implementation and allowing guided upsampling in
large-scale models.

• We show that FeatUp features can be used as drop-in replacements for ordinary features
to improve performance on dense prediction tasks and model explainability.
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5.4 Related Work

Image-adaptive filtering. Adaptive filters are commonly used to enhance images while
preserving their underlying structure and content. For example, bilateral filters [156–158]
apply a spatial filter to a low-resolution signal and an intensity filter to a high-resolution
guidance to blend information from the two. Joint Bilateral Upsampling (JBU) [153] uses
this technique to upsample a low-resolution signal with a high-resolution guidance. JBU has
been used successfully for efficient image enhancement and other applications. Recently, some
works embed bilateral filtering approaches [159] and nonlocal means [160] into convolutional
networks [161–164] and vision transformers [165, 166]. Shape Recipes [167] learn the local
relationship between signals to create up-sample target signals. Pixel-adaptive convolutional
(PAC) networks [168] adapt a convolution operation to input data and has been used to
advance performance in segmentation [169, 170] and monocular depth estimation [171–173].
The Spatially-Adaptive Convolution (SAC) in [174] factorizes the adaptive filter into an
attention map and convolution kernel. [175] extend bilateral filtering to superpixels and
embed this operation inside of a deep network to improve semantic segmentation. This class
of methods, effective across a variety of applications, directly incorporates spatial information
into the task while still allowing for flexibility in learning a network.

Image super-resolution. One of the earliest deep unsupervised super-resolution methods
was Zero-Shot Super-resolution (ZSSR) [176], which learns a single-image network at test
time. Local implicit models [177] use locally-adaptive models to interpolate information, and
have been shown to improve the performance of super-resolution networks. Deep Image Priors
[178] show that CNNs provide inductive biases for inverse problems such as zero-shot image
denoising and super-resolution. While there is extensive literature on image super-resolution,
these methods are not well-adapted to handle ultra-low resolution, yet high-dimensional deep
features as we show in the Supplement.

General-purpose feature upsampling. A widely-used approach to upsample deep
feature maps is bilinear interpolation. Though efficient, this method blurs information and
is insensitive to the content or the high-resolution structure in the original image. Nearest
neighbor and bicubic interpolation [179] have similar drawbacks. Evaluating a network on
larger inputs can achieve higher resolutions but with a steep computational cost. Furthermore,
this often degrades model performance and semantics due to the decreased relative receptive
field size. For deep convolutional networks, one popular technique is to set final convolution
strides to 1 [155, 180]. However, this approach yields blurry features, as the model’s receptive
field is still large. Recent works using visual transformers [181, 182] perform a similar
modification on input patch strides and interpolate positional encodings. Though simple
and reasonably effective, this approach incurs a steep increase in computational footprint for
every 2× increase in resolution, making it impossible to use in practice for larger upsampling
factors. This approach can also distort features because of the previously mentioned fixed
receptive field of the patches.
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Figure 5.3: We introduce two learned downsamplers. The simple downsampler (Left) is a
fast learned blur kernel. The attention downsampler (right) combines a predicted salience
map with spatially invariant kernels. This downsampler can better adapt to networks with
nonlinear and dynamic receptive fields.

Image-adaptive feature upsampling. Many different operations exist in the literature to
create features at higher resolutions. Deconvolutions [183–186] and transposed convolutions
[187] use a learned kernel to transform features into a new space with a larger resolution.
The resize-convolution [188] appends a learned convolution to deterministic upsampling
procedure and reduces checkerboard artifacts that plague deconvolutions [188–190]. The
resize-convolution is now a common component of image decoders such as the U-Net [191]
and has been applied to semantic segmentation [192–194] and super-resolution [195–197].
Other methods such as IndexNet [198] and Affinity-Aware Upsampling (A2U) [199] are
effective on image matting but fall short on other dense prediction tasks [200]. Methods
such as Pixel-Adaptive Convolutions [168], CARAFE [201]SAPA [202], and DGF [203] use
learned input-adaptive operators to transform features. Though PAC is flexible, it does
not upsample existing feature maps faithfully and instead is used to transform features
for downstream tasks. Additionally, DGF approximates the JBU operation with learned
pointwise convolutions and linear maps, but does not fully implement JBU because the local
query/model is computationally intractable. This is precisely the problem we solve exactly
with our new efficient CUDA kernel. Additionally, FADE [200] introduces a new semi-shift
operator and uses decoder features to produce a joint feature upsampling module. [204] view
feature upsampling in a different light, focusing on a nearest-neighbors approach to align
feature maps in encoder-decoder architectures with IFA. While IFA performs well on the
specific semantic segmentation benchmarks, it does not take advantage of image guidance
and fails to learn high quality representations outside of the encode-decoder framework, as
we show in the Supplement.

5.5 Methods

The core intuition behind FeatUp is that one can compute high-resolution features by
observing multiple different “views” of low-resolution features. We draw a comparison with
3D scene reconstruction models such as NeRF [152]; in the same way that NeRF builds
an implicit representation [205, 206] of a 3D scene by enforcing consistency across many
2D photos of the scene, FeatUp builds an upsampler by enforcing consistency across many
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Figure 5.4: Our Implicit version of FeatUp learns an implicit network to upsample a single
image’s features. Our JBU FeatUp learns a stack of JBUs that learns to quickly upsample
features from a large image corpora.

low-resolution feature maps. Like in broader NeRF literature, a variety of methods can
arise from this basic idea. In this work, we introduce a lightweight, forward-pass upsampler
based on Joint Bilateral Upsampling [153] as well as an implicit network based upsampling
strategy. The latter is learned per-image and query-able at arbitrary resolution. We provide
an overview of the general FeatUp architecture in Figure 5.2.

The first step in our pipeline is to generate low-resolution feature views to refine into a
single high-resolution output. To this end, we perturb the input image with small pads, scales,
and horizontal flips and apply the model to each transformed image to extract a collection of
low-resolution feature maps. These small image jitters allow us to observe tiny differences in
the output features and provide sub-feature information to train the upsampler.

Next, we construct a consistent high-resolution feature map from these views. We postulate
that we can learn a latent high-resolution feature map that, when downsampled, reproduces
our low-resolution jittered features (see Figure 5.2). FeatUp’s downsampling is a direct analog
to ray-marching; just as 3D data is rendered into 2D in this NeRF step, our downsampler
transforms high-resolution features into low-resolution features. Unlike NeRF, we do not need
to estimate parameters that generate each view. Instead, we track the parameters used to
“jitter” each image and apply the same transformation to our learned high-resolution features
prior to downsampling. We then compare downsampled features to the true model outputs
using a gaussian likelihood loss [207]. A good high-resolution feature map should reconstruct
the observed features across all the different views.

More formally, let t ∈ T be from a collection of small transforms such as pads, zooms,
crops, horizontal flips, and their compositions. Let x be an input image, f be our model
backbone, σ↓ be a learned downsampler, and σ↑ be a learned upsampler. We can form
the predicted high-res features Fhr by evaluating Fhr = σ↑(f(x), x). We note that this
parameterization allows σ↑ to be a guided upsampler (which depends on both x and f(x)),
an unguided upsampler (which depends on only f(x)), an implicit network (which depends
on only x), or a learned buffer of features (which depends on nothing). We can now form our
main multi-view reconstruction loss term as follows:

Lrec =
1

|T |
∑
t∈T

1

2s2
∥f (t (x))− σ↓ (t (Fhr))∥22 + log(s) (5.1)

Where ∥·∥ is the standard squared l2 norm and s = N (f (t (x))) is a spatially-varying
adaptive uncertainty [207] parameterized by a small linear network N . This turns the MSE
loss into a proper likelihood capable of handling uncertainty. This extra flexibility allows
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Figure 5.5: Low-res ViT features (14×14) from the COCO-Stuff validation set are upsampled
by 16×. Bilinear and resize-conv baselines produce blurry outputs. Larger inputs and smaller
transformer strides can help, but introduce noise or blur and are bound by time and memory
constraints (We can only compute 8× upsamplings for these methods, see Figure C.10). Our
FeatUp methods preserve semantics of the low-res features and recover lost spatial information
from the high-res input image.

the network to learn when certain outlier features fundamentally cannot be upsampled. In
the supplement, we show this adaptive uncertainty’s effectiveness in an ablation study and
visualization.

5.5.1 Choosing a Downsampler

Our next architectural choice is the learned downsampler σ↓. We introduce two options:
a fast and simple learned blur kernel, and a more flexible attention-based downsampler.
Both proposed modules do not change the “space” or “semantics” of the features with
nontrivial transformations, but rather only interpolate features within a small neighborhood.
We diagram both choices in Figure 5.3 and demonstrate the effectiveness of the attention
downsampler in Figure C.2 of the Supplement.

Our simple downsampler blurs the features with a learned blur kernel and can be im-
plemented as a convolution applied independently to each channel. The learned kernel is
normalized to be non-negative and sum to 1 to ensure the features remain in the same space.

Though this blur-based downsampler is efficient, it cannot capture dynamic receptive
fields, object salience, or other nonlinear effects. To this end, we also introduce a more
flexible attention downsampler that spatially adapts the downsampling kernel. In short, this
component uses a 1x1 convolution to predict a saliency map from the high-resolution features.
It combines this saliency map with learned spatially-invariant weight and bias kernels and
normalizes the result to create a spatially-varying blur kernel that interpolates the features.
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Figure 5.6: FeatUp can upsample the features of any backbone, even convnets with aggressive
nonlinear pooling.

More formally:

σ↓(Fhr)ij = softmax(w ⊙ Conv(Fhr[Ωij]) + b) · Fhr[Ωij] (5.2)

Where σ↓(F )ij is the i, jth component of the resulting feature map and Fhr[Ωij] refers
to a patch of high resolution features corresponding to the i, j location in the downsampled
features. ⊙ and · refer to the elementwise and inner products respectively, and w and b are
learned weight and bias kernels shared across all patches. Our main hyperparameter for both
downsamplers is the kernel size, which should be larger for models with larger receptive fields
such as convolutional nets. We defer discussion of model-specific hyperparameters to the
Supplement.

5.5.2 Choosing an Upsampler

A central choice in our architecture is the parameterization of σ↑. We introduce two variants:
“JBU” FeatUp parameterizes σ↑ with a guided upsampler based on a stack of Joint Bilateral
Upsamplers (JBU) [153]. This architecture learns an upsampling strategy that generalizes
across a corpus of images. The second method, “Implicit” FeatUp, uses an implicit network
to parameterize σ↑ and can yield remarkably crisp features when overfit to a single image.
Both methods are trained using the same broader architecture and loss. We illustrate both
strategies in Figure 5.4.

Joint Bilateral Upsampler. Our feedforward upsampler uses a stack of parameterized
joint bilateral upsamplers (JBU) [153]:

Fhr = (JBU(·, x) ◦ JBU(·, x) ◦ ...)(f(x)) (5.3)

where ◦ is function composition, f(x) is the low-resolution feature map, and x is the
original image. This architecture is fast, directly incorporates high-frequency details from the
input image into the upsampling process, and is independent of the architecture of f . Our
formulation generalizes the original JBU [153] implementation to high-dimensional signals
and makes this operation learnable. In joint bilateral upsampling we use a high-resolution
signal, G, as guidance for the low-resolution features Flr. We let Ω be a neighborhood of each
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pixel in the guidance. In practice, we use a 3× 3 square centered at each pixel. Let k(·, ·) be
a similarity kernel that measures how “close” two vectors are. We can then form our joint
bilateral filter:

F̂hr[i, j] =
1

Z

∑
(a,b)∈Ω

(
Flr[a, b] krange(G[i, j], G[a, b]) kspatial([i, j], [a, b])

)
(5.4)

where Z is a normalization factor to ensure the kernel sums to 1. Here, kspatial is a
learnable Gaussian kernel on the Euclidean distance between coordinate vectors of width
σspatial:

kspatial(x, y) = exp

(
−∥x− y∥22
2σ2

spatial

)
(5.5)

Furthermore, krange is a temperature-weighted softmax [207] applied to the inner products
from a multi-layer perceptron (MLP) that operates on the guidance signal G:

krange(x, y) = softmax(a,b)∈Ω

(
1

σ2
range

MLP (G[i, j]) ·MLP (G[a, b])

)
(5.6)

where σ2
range acts as the temperature. We note that the original JBU uses a fixed Gaussian

kernel on the guidance signal, G. Our generalization performs much better as the MLP can
be learned from data to create a better upsampler. In our experiments, we use a two-layer
GeLU [208] MLP with 30-dimensional hidden and output vectors. To evaluate Flr[a, b] we
follow the original JBU formulation and use bilinear-interpolated features if the guidance
pixel does not directly align with a low-resolution feature. For resolution independence, we
use coordinate distances normalized to [−1, 1] in the spatial kernel.

One challenge we faced was the poor speed and memory performance of existing JBU
implementations. This could explain why this simple approach is not used more widely. To
this end, we contribute an efficient CUDA implementation of the spatially adaptive kernel
used in the JBU. Compared to a naive PyTorch implementation with the torch.nn.Unfold
operator, our operation uses up to two orders of magnitude less memory and speeds inference
by up to 10×. We demonstrate its significant performance improvements in Table C.4 of the
supplement.

Implicit Our second upsampler architecture draws a direct analogy with NeRF by parametriz-
ing the high-resolution features of a single image with an implicit function Fhr = MLP(z).
Several existing upsampling solutions also take this inference-time training approach, in-
cluding DIP [178] and LIIF [177]. We use a small MLP to map image coordinates and
intensities to a high-dimensional feature for the given location. We follow the guidance of
prior works [152, 209, 210] and use Fourier features to improve the spatial resolution of our
implicit representations. In addition to standard Fourier positional features, we show that
adding Fourier color features allows the network to use high-frequency color information
from the original image. This significantly speeds convergence and enables graceful use of
high-resolution image information without techniques like Conditional Random Fields (CRFs).
We illustrate the profound effect of Fourier color features in Section C.4 of the Supplement.
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More formally, let h(z, ω̂) represent the component-wise discrete Fourier transform of an
input signal z, with a vector of frequencies ω̂. Let ei and ej represent the two-dimensional
pixel coordinate fields ranging in the interval [−1, 1]. Let : represent concatenation along the
channel dimension. We can now express our high-resolution feature map as:

Fhr = MLP(h(ei : ej : x, ω̂)) (5.7)

Our MLP is a small 3-layer ReLU [211] network with dropout [212](p = .1) and layer
normalization [213]. We note that, at test time, we can query the pixel coordinate field to
yield features Fhr at any resolution. The number of parameters in our implicit representation
is over two orders of magnitude smaller than a (224× 224) explicit representation while being
more expressive, significantly reducing convergence time and storage size.

5.5.3 Additional Method Details

Accelerated Training with Feature Compression To reduce the memory footprint and
further speed up the training of FeatUp’s implicit network, we first compress the spatially-
varying features to their top k = 128 principal components. This operation is approximately
lossless as the top 128 components explain ∼ 96% of the variance across a single image’s
features. This improves training time by a factor of 60× for ResNet-50, reduces the memory
footprint, enables larger batches, and does not have any observable effect on learned feature
quality. When training the JBU upsampler, we sample random projection matrices in each
batch to avoid computing PCA in the inner loop. This achieves the same effect thanks to the
Johnson–Lindenstrauss lemma [214].

Total Variation Prior To avoid spurious noise in the high resolution features, we add a
small (λtv = 0.05) total variation smoothness prior [215] on the implicit feature magnitudes:

Ltv =
∑
i,j

(
(||Fhr[i, j]|| − ||Fhr[i− 1, j]||)2 + (||Fhr[i, j]|| − ||Fhr[i, j − 1]||)2

)
(5.8)

This is faster than regularizing full features and avoids overprescribing how the individual
components should organize. We do not use this in the JBU upsampler because it does not
suffer from overfitting. We demonstrate the importance of this regularizer in Section C.4 in
the supplement.

5.6 Experiments

We compare our method against several key upsampling baselines from the literature, in
particular: Bilinear upsampling, Resize-conv, Strided (i.e. reducing the stride of the back-
bone’s patch extractor), Large Image (i.e. using a larger input image), CARAFE [201],
SAPA [202], and FADE [200]. We upsample ViT [151] features by 16× (to the resolution
of the input image) with every method except the strided and large-image baselines, which
are computationally infeasible above 8× upsampling. For additional details on the strided
implementation, please refer to Section C.2 of the Supplement.
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CAM Score Semantic Seg. Depth Estimation
A.D. ↓ A.I. ↑ Acc. ↑ mIoU ↑ RMSE ↓ δ > 1.25 ↑

Low-res 10.69 4.81 65.17 40.65 1.25 0.894
Bilinear 10.24 4.91 66.95 42.40 1.19 0.910

Resize-conv 11.02 4.95 67.72 42.95 1.14 0.917
DIP 10.57 5.16 63.78 39.86 1.19 0.907

Strided 11.48 4.97 64.44 40.54 2.62 0.900
Large image 13.66 3.95 58.98 36.44 2.33 0.896

CARAFE 10.24 4.96 67.1 42.39 1.09 0.920
SAPA 10.62 4.85 65.69 41.17 1.19 0.917

FeatUp (JBU) 9.83 5.24 68.77 43.41 1.09 0.938
FeatUp (Implicit) 8.84 5.60 71.58 47.37 1.04 0.927

Table 5.1: Comparison of feature upsamplers across metrics on CAM faithfulness, linear probe
semantic segmentation, and linear probe depth estimation. Both FeatUp variants consistently
outperform other approaches, including other forward-pass upsamplers (CARAFE, SAPA)
and features optimized at inference-time (DIP).

5.6.1 Qualitative Comparisons

Visualizing upsampling methods Figure 5.5 demonstrates the dramatic qualitative
improvement FeatUp achieves compared to several baselines. Our visualizations fit a 3-
dimensional PCA on each image’s low-resolution ViT features and use this PCA to map
upsampled features into the same RGB space. We also show that this high-fidelity upsampling
extends to higher PCA components in Figure C.5, and that FeatUp can improve small object
retrieval in Figure C.8 in the Supplement.

Robustness across vision backbones Figure 5.6 demonstrates that FeatUp can upsample
a variety of modern vision backbones. In particular, we show the implicit FeatUp features
across a variety of backbones spanning transformers, convolutional nets, and both supervised
and self-supervised models. Even though backbones like ResNet-50 do not precisely localize
objects due to their large receptive fields, FeatUp can reasonably associate features to the
correct object.

5.6.2 Transfer Learning for Semantic Segmentation and Depth Esti-
mation

Next, we demonstrate that FeatUp can serve as a drop-in replacement for existing features
in downstream applications. To demonstrate this, we adopt the widely used experimental
procedure of using linear probe transfer learning to evaluate representation quality. More
specifically, we train linear probes on top of low-resolution features for both semantic
segmentation and depth estimation. We then freeze and apply these probes to upsampled
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Figure 5.7: A comparison of different upsampling methods across each of the tasks considered
in our analysis. FeatUp achieves significant improvements in resolution across each task.

features to measure performance improvement. If features are valid drop-in improvements,
existing probes should work well without adaptation. For all experiments, we use a frozen
pre-trained ViT-S/16 as the featurizer, upsample the features (14x14 → 224x224), and extract
maps by applying a linear layer on the features.

For semantic segmentation, we follow the experimental setting of both [145, 216] and
train a linear projection to predict the coarse classes of the COCO-Stuff (27 classes) training
dataset using a cross-entropy loss. We report mIoU and accuracy on the validation set in
Table 5.1. For depth prediction we train on pseudo-labels from the MiDaS (DPT-Hybrid)
[217] depth estimation network using their scale- and shift-invariant MSE. We report root
mean square error (RMSE) and the δ > 1.25 metric which is common in monocular depth
estimation literature. More specifically this metric is defined as the percentage of pixels with
δ = max( y

y∗
, y

∗

y
) > 1.25 where y is the depth prediction and y∗ is the ground truth.

We stress that these linear probe evaluations show that FeatUp features can improve
downstream tasks without re-training models. These analyses do not aim to create SOTA
segmentation or depth networks. Both FeatUp variants outperform all baselines across all
experiments, showing that either variant can be used as a drop-in replacement for existing
features. Qualitatively, Figure 5.7 and Figures C.12 - C.13 in the supplement show cleaner,
more cohesive predictions across both tasks.

5.6.3 Class Activation Map Quality

Attributing a model’s predictions to specific pixels is crucial for diagnosing failures and
understanding a model’s behavior. Unfortunately, common interpretation methods like Class
Activation Maps (CAM) are limited by the low res of the deep feature maps and cannot resolve
small objects. We show that FeatUp features can be dropped into existing CAM analyses
to yield stronger and more precise explanations. More specifically, we use the literature’s
established metrics, Average Drop (A.D.) and Average Increase (A.I.), that measure CAM
quality (refer to Section C.11 in the Supplement for a detailed description of these metrics).
Intuitively, A.D. and A.I. capture how much an image’s most salient region changes the
classification output. A good CAM should highlight regions with the greatest effect on the
classifier’s predictions, so censoring these regions will have the largest impact on the model’s

84



Metric Bilinear
Resize-
conv

IndexNet A2U CARAFE SAPA FADE
FeatUp
(JBU)

mIoU 39.7 41.1 41.5 41.5 42.4 41.6 43.6 44.2
mAcc 51.6 51.9 52.2 52.3 53.2 55.3 54.8 55.8
aAcc 78.7 79.8 80.2 79.9 80.1 79.8 80.7 80.7

Params (M) 13.7 +3.54 +12.6 +0.12 +0.78 +0.20 +0.29 +0.16
GFLOPs 16.0 +34.40 +30.90 +0.51 +1.66 +1.15 +2.95 +1.70

Table 5.2: Semantic segmentation results with the Segformer [218] architecture trained on
the ADE20k train set and evaluated on the val set. FeatUp (JBU) outperforms the standard
bilinear and resize-conv upsamplers in U-Net architectures, IndexNet [198], A2U [199], and
other task-agnostic upsamplers (CARAFE [201], SAPA [202], FADE [200]). Additionally, our
upsampler is competitive in parameter and floating-point operation count.

predictions (lower A.D., higher A.I.). Upsamplers are trained on the ImageNet training set
for 2,000 steps, and we compute metrics across 2,000 random images from the validation set.
We use a frozen pre-trained ViT-S/16 as the featurizer, and extract CAMs by applying a
linear classifier after max-pooling. Upsampling is done (14x14 → 224x224) on the features
themselves, and CAMs are obtained from these high-resolution maps. We report results in
Table 5.1, and Figures 5.7, C.11.

5.6.4 End-to-end Semantic Segmentation

FeatUp not only improves the resolution of pre-trained features but can also improve models
learned end-to-end. We adopt the experimental setting of [200, 202] to show that our JBU
upsampler improves end-to-end performance on ADE20K semantic segmentation using the
Segformer [218] architecture. Specifically, we train SegFormer on ADE20k [219, 220] (20,210
training and 2,000 val) for 160k steps. To validate that our setup matches that of existing
literature despite numerical discrepancies, we also compute FLOPs for SegFormer with
various upsamplers in Table 5.2. These counts are comparable with those in [221], confirming
our architectural setup. We report mean IoU, mean class accuracy (mAcc), and all-pixel
accuracy (aAcc) against several recent baselines in Table 5.2 including IndexNet [198], A2U
[222], CARAFE [201], SAPA [202], and FADE [200] in addition to more standard bilinear
and resize-conv operators. Figure C.14 in the Supplement shows examples of segmentation
predictions across these methods. FeatUp consistently outperforms baselines with fewer added
parameters, showing that FeatUp can also improve a broader, jointly trained architecture.

5.7 Chapter Conclusion

We present FeatUp, a novel approach to upsample deep features using multiview consistency.
FeatUp solves a critical problem in computer vision: deep models learn high quality features
but at prohibitively low spatial resolutions. Our JBU-based upsampler imposes strong spatial
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priors to accurately recover lost spatial information with a fast feedforward network based
on a novel generalization of Joint Bilateral Upsampling. Our implicit FeatUp can learn
high quality features at arbitrary resolutions. Both variants dramatically outperform a wide
range of baselines across linear probe transfer learning, model interpretability, and end-to-end
semantic segmentation.
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Chapter 6

DenseAV: Unsupervised Visual
Grounding of Sound and Language in
Coss-Modal Representations

Figure 6.1: Visual overview of the DenseAV algorithm. Two modality-specific backbones
featurize audio and visual signals. We introduce a novel generalization of multi-head attention
to extract attention maps that discover and separate the “meaning” of spoken words and
the sounds an object makes. DenseAV performs this localization and decomposition solely
through observing paired stimuli such as videos.

6.1 Website and Video

For a quick video overview and blog post of this chapter, see https://mhamilton.net/denseav.html

6.2 Chapter Summary

In Chapters 3 and 4 we saw that deep representations have the power to connect similar objects
together at very high spatial resolution (using Chapter 5) without humans in the loop. In this
chapter, we take this idea one step further by connecting objects across two modalities: audio
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Figure 6.2: Qualitative comparison of several modern architectures for associating audio and
video modalities. Only DenseAV learns a high-resolution and semantically aligned set of local
features. This allows us to perform speech and sound prompted semantic segmentation using
only the inner products between deep features. Other approaches, such as ImageBind, do not
show aligned local feature maps. Approaches that do show some localization capabilities, like
DAVENet, do not generalize to sound and language, and do not achieve the high-resolution
localization capabilities of DenseAV. Dense features are visualized using PCA as described in
Chapter 4

and video. In particular, we present DenseAV a novel dual encoder grounding architecture
that learns high-resolution semantically meaningful and audio-visual aligned features solely
through watching videos. We show that DenseAV can discover the “meaning” of words and the
“location” of sounds without explicit localization supervision. Furthermore, it automatically
discovers and distinguishes between these two types of associations without supervision. We
show that DenseAV’s localization abilities arise from a new multi-head feature aggregation
operator that directly compares dense image and audio representations for contrastive learning.
In contrast many other systems that learn “global” audio and video representations cannot
localize words and sound. This concept is a multi-modal generalization of the key ideas
introduced in Chapter 4. Finally, we contribute two new datasets to improve the evaluation
of AV representations through speech and sound prompted semantic segmentation. On these
and other datasets we show DenseAV dramatically outperforms the prior art on speech and
sound prompted semantic segmentation. DenseAV outperforms the current state-of-the-art
ImageBind on cross-modal retrieval using fewer than half of the parameters.

6.3 Introduction

In Chapters 3 and 4 we saw that deep representations have the power to connect similar
objects together and that this was enough to discover visual objects from scratch. However,
Chapter 4 could not automatically associate these found objects with language. Amazingly,
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the objects were almost identical to those discovered by humans just with arbitrary names
like “Object 12”. In this chapter we show that discovering visual objects is just the start of
whats possible by analyzing the relationships between deep representations, by generalizing
this concept to multimodal relationships.

Associating audio and video events is a fundamental task in human perception. As infants
develop, the synchronization and correspondence of visible sounds enables multi-modal
association – a voice with a face, and a “moo" with a cow [223]. Later, as they acquire
language, they associate spoken words with objects they represent [224, 225]. Amazingly,
these association abilities, constituting speech recognition, sound event recognition, and visual
object recognition, develop without much direct supervision. This work aims to create a model
with this capability by learning high-resolution, semantically meaningful, audio-visually (AV)
aligned representations. Features with these properties can be used to discover fine-grained
correspondences between modalities without localization supervision or prior knowledge of
the semantic representation of language, just like how the uni-modal relationships of Chapter
4 could discover visual objects.

Consider the spoken caption and accompanying sounds of the image shown in Figure 6.1.
We wish to “ground” both the speech and the sounds by identifying them with the corre-
sponding visual objects. For instance, both the spoken word “dog” and the sound of a bark
in the audio signal should be associated with the pixels of the dog in the visual signal if
present. We seek high quality local representations where this behavior, which is notably
absent from popular approaches in the literature, emerges from simple inner products between
cross-modal features.

To achieve this, we make three innovations. First, we introduce DenseAV, a dual-encoder
architecture that computes a dense similarity volume over audio and visual features. Looking
at a slice of this similarity volume for a spoken word, as in Figure 6.1, we can visualize the AV
activation strength between a word or sound and an image’s pixels. The novelty we introduce
is to extend this dense similarity mechanism to have multiple similarity volume heads, much
like those of multi-head attention. This allows each head to specialize on a particular type
of coupling between the visual and audio modalities. Interestingly, we discover that if we
give DenseAV two heads and train on a dataset that contains both language and sound, the
heads naturally learn to distinguish language from more general sound using only cross-modal
supervision. For example, as shown in Figure 6.1, head 1 focuses on sounds, such as a dog
bark, emitted by visible objects, whereas head 2 focuses on speech, such as the word “dog",
that refers to visible objects.

Second, we show the importance of the “aggregation function” one uses to create a
summary similarity score between an audio clip and a video frame for contrastive learning.
The traditional choices, using inner products between global representations such as class
tokens [112, 226, 227] or pooled features [228, 229], do not promote AV alignment of dense
local features. Because of this, several popular audio-video backbones that excel on cross-
modal retrieval cannot directly associate objects and sounds using their local features. This
limits their ability to be used for downstream tasks such as semantic segmentation, sound
localization, or unsupervised language learning and discovery.

Third, we introduce two semantic segmentation datasets to evaluate visual grounding
with AV representations for speech and (non-speech) sounds. We build these datasets from
the high-quality segmentation masks provided by the ADE20K dataset [230] and measure

89



Figure 6.3: Architectural overview of our multi-head attention aggregator. Dense feature
maps are split into K heads (K = 1, 2) in our experiments. We form an AV activation tensor
by taking the inner-products of each head’s features across the spatial and temporal extent of
the visual and audio signals respectively as in Equation 6.1. We then aggregate this similarity
volume into a single similarity score by max-pooling head and spatial dimensions and average-
pooling audio dimensions. Our approach aims to encourage the network to identify specific
shared objects between the audio and visual modalities. In particular, max-pooling of heads
disentangles sound and language, and max-pooling spatial dimensions helps localize objects.

mean average precision (mAP) and mean intersection over union (mIoU) on a binary mask
prediction task. This evaluation is simpler and more thorough than previous efforts to
measure visual grounding such as the concept counting metrics of [231] and the “pointing
games” of [232–234] that only check if a heatmap’s peak occurs within a target box or segment.
Furthermore, our evaluation avoids brittle word-net ontologies [235], clustering, Wu and
Palmer distance [236], threshold choices, and a variety of other complicating factors.

To summarize, our main contributions are as follows:

• We introduce DenseAV, a novel self-supervised architecture that learns high-resolution
AV correspondences.

• We introduce a local-feature-based image similarity function that significantly improves
a network’s zero-shot localization ability compared to common strategies such as average
pooling or CLS tokens.

• We introduce new datasets for evaluating speech and sound prompted semantic seg-
mentation. We show DenseAV significantly outperforms the current state-of-the-art on
these tasks as well as on cross-modal retrieval.

• We discover that our multi-head architecture naturally disentangles audio-visual corre-
spondence into sound and language components using only contrastive supervision.
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6.4 Related Work

Audio-visual (AV), text-visual, and other multi-modal models have a long history [237, 238],
and have recently surged in popularity [239]. Broadly speaking DenseAV is an audio-video
contrastive learning architecture; this class of methods learns AV representations by aligning
paired signals and pushing apart unpaired signals [240, 241]. Of the models in this class,
several stand out for their ability to localize sounds [233, 242, 243] or capture the semantics
of language [231, 244]. Many models in this class compare AV signals using inner products
between “global” representations formed by pooled deep features [229, 245, 246], or class
tokens [227, 243, 244, 247, 248]. Most notably, ImageBind has gained popularity due to its
state-of-the-art performance on a variety of tasks and datasets and unified class-token-based
contrastive architecture. In this work we show that many of these architectures do not show
strong localization properties in their local features, despite excelling at cross-modal retrieval
on a “global” level. This limits their applicability to new out-of-domain sounds, sounds that
don’t have a textual representation, and low-resource languages. We diverge from these works
by directly supervising local tokens. In particular, we build on previous works [231, 233]
that show max-pooling improves localization capabilities and introduce a new multi-head
aggregation operator that generalizes previous losses using a self-attention-like operator [111].

Another class of methods discover structure in signals through uni- and multi-modal
clustering. Early works on audio clustering [249] discovered meaningful utterances without
supervision. Similar visual analyses, including those of Chapter 4 have discovered visual
objects [250–253]. Recent works have applied these ideas to the AV domain [254, 255], but
do not focus on extracting high-resolution AV representations.

Finally, several works investigate generative audio-video learning. The Sound of Pixels [256]
generates the sound of a specific object using a source separation loss. Newer approaches
using GANs [257, 258], and diffusion models [247, 259, 260] have generated audio from
video and vice versa. Here we focus on improving the local representations of contrastive
learners because of their relative scalability, simplicity, and ability to learn high-quality
representations.

6.5 Methods

At a high level, DenseAV tries to determine when a given audio and visual signal belong
“together” using dense audio-visual representations. To perform this task robustly, DenseAV
must learn to predict the contents of an audio signal from a visual signal and vice versa.
Doing so causes DenseAV to learn dense modality-specific features that capture the mutual
information shared between the modalities [261]. Once learned, we can directly query
these informative features to perform speech and sound prompted semantic segmentation as
illustrated in Figure 6.1.

More specifically, DenseAV is built from two modality-specific deep featurizers. These
backbones produce temporally varying audio features across an audio clip and spatially
varying video features for a single randomly selected frame. Our loss computes a similarity
between audio and visual signals based on the intuition that two signals are similar if they
have a variety of strong couplings or shared objects. More formally, we form a scalar similarity
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for a pair of audio and video signals by carefully aggregating a volume of pairwise inner
products between dense features. We use the InfoNCE [101] contrastive loss to encourage
similarity between “positive” pairs of signals and dissimilarity between “negative” pairs formed
by in-batch shuffling. Figure 6.3 graphically depicts this loss function and subsequent sections
detail each component of our architecture.

6.5.1 Multi-Headed Aggregation of Similarities

DenseAV’s key architectural distinction is its loss function that directly supervises the “local”
tokens of the visual and audio featurizers. This is a significant departure from other works [226,
227, 247, 262–264] that pool modality specific information into “global” representations prior
to the contrastive loss. Unlike prior works, our loss function aggregates the full pairwise
similarities between the local tokens into an aggregate measure of similarity for a given pair
of audio and visual signals. We show in Figure 6.2 that this architectural choice enables
DenseAV’s local features to align across modalities whereas other approaches such as average
pooling, class tokens, and SimPool [265] do not.

We first describe our loss function informally and definite it more precisely in the next
paragraph. Our loss function computes the (un-normalized) inner product between every pair
of visual and audio features to form a “volume” of inner products. This volume represents
how strongly each part of an audio signal “couples” to each part of a visual signal. We aim to
find many large couplings between positive pairs of audio and visual signals. Ideally, these
couplings should connect visual objects with their references in the audio signal. Conversely,
we do not want to find couplings between negative pairs of signals. To compute a single
global coupling strength for a pair of signals, we aggregate this volume of pairwise similarities
into a single number. There are myriad ways to aggregate this volume ranging from “soft"
average-pooling to “hard" max-pooling. Average pooling yields dense gradients and can
improve convergence speed and stability. However, max-pooling allows the network to focus
on the best couplings regardless the object’s size or a sound’s duration. Our aggregation
function combines the benefits of average and max pooling by max-pooling visual dimensions
and average pooling audio dimensions as proposed in [231]. Intuitively speaking, this averages
the strongest image couplings over an audio signal. It allows small visual objects to have
large effects yet provides a strong training gradient to many regions of the signals. Finally,
we draw inspiration from multi-head self-attention [111] and generalize this operation to
multiple “heads” that we max-pool before pooling the visual and audio dimensions. This
allows DenseAV to discover multiple “ways” to associate objects across modalities.

More formally, let S(a, v) ∈ R represent the similarity between a tensor of audio features
a ∈ RCKFT of size (Channel × K-heads × Frequency × Time) and a tensor of visual
features v ∈ RCKHW of size (Channel × K-heads × Height ×Width). To define this scalar
similarity score, we first create a local similarity volume, s(a, v) ∈ Rkfthw. For simplicity, we
consider the aggregated similarity between a single image and audio clip but note one can
easily generalize this to max-pool over video-frames. We define the full pairwise volume of
similarities as:
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s(a, v) ∈ Rkfthw =
C∑
c=1

a[c, k, f, t] · v[c, k, h, w] (6.1)

Where a[c, k, f, t] represents the value of a at location [c, k, f, t] and · is scalar multiplication.
We aggregate this similarity volume into a single score S(a, v) ∈ R:

S(a, v) = 1

FT

F∑
f=1

T∑
t=1

max
k,h,w

(s(a, v)[k, f, t, h, w]) (6.2)

We note that this operation can be viewed as a multi-head generalization of the MISA
loss of [231], and a multi-head multi-time generalization of the MIL loss of [233].

6.5.2 Loss

We can use the similarity between audio and visual signals defined in Equation 6.2 to construct
a contrastive loss. We follow recent works [247, 266, 267] and use the temperature-weighted
InfoNCE [101] to encourage similarity between positive pairs of signals and dissimilarity
between negative pairs. In DenseAV, we form B positive pairs by splitting the audio and
visual components of a Batch of training data. We form B2−B negative pairs by comparing
a signal to all of the other signals in the training batch. More formally let (ab, vb)

B
1 be B

pairs of audio and visual signals. The visual-retrieval term of our InfoNCE loss is then:

LA→V =
1

2B

B∑
b=1

(
log

exp (γS(ab, vb))∑B
b′=1 exp (γS(ab, vb′))

)
(6.3)

Where γ ∈ R+ is a trainable inverse temperature parameter. We symmetrize this loss by
adding the analogous audio-retrieval term, LV→A, which iterates over negative audio signals
in the denominator.

6.5.3 Audio and Visual Featurizers

The core of DenseAV is two modality-specific backbone networks. We use the DINO vision
transformer [226] with ImageNet pretrained weights (without labels) to provide a strong,
yet fully unsupervised, vision backbone. Unlike other approaches that use CLIP [263] as a
backbone, DINO does not require paired text captions and learns from unlabeled images
only. Practically, we find that DINO outperforms CLIP because of its better-behaved local
tokens [268], an effect we explore in the Supplement. We append an additional layer norm
operation across the channel dimension [213] and a 1×1 Convolution to DINO. The layer-norm
and 1×1 convolution ensure the architecture does not start with a saturated loss function. We
use the HuBERT audio transformer [269] as DenseAV’s audio backbone. HuBERT operates
on waveforms and is trained on the LibriSpeech [270] dataset using only self-supervision.
Hubert outputs a single feature per time frame, corresponding to F = 1 in Section 6.5.
Though HuBERT was only trained on speech, its audio features can be fine-tuned for more
general sounds, much like how vision backbones can be fine-tuned for new datasets [271]. As
in the visual branch, we append a channel-wise LayerNorm block and two 3× 3 convolutions
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to the audio branch. These layers help the network avoid saturation and speed convergence.
Furthermore, the two convolutions help the model aggregate information, which reduces the
cost of the pairwise feature comparison used in our loss function. We refer to these added
layers after the pretrained backbones as the “aligners” in later sections.

6.5.4 Regularizers

Disentanglement Regularizer, LDis: We add a small regularization term to encourage each
head of Equation 6.1 to specialize and learn independent types of audio-visual associations.
Interestingly we find that our 2-head model naturally learns to distinguish the meaning of
words with one head and capture the sounds objects produce with another head. To further
encourage this unsupervised discovery of concepts, we penalize the network when multiple
attention heads are simultaneously active. More precisely, let (ab, vb)B1 be a Batch of B paired
audio and visual signals. Our disentanglement loss for two heads is then:

LDis = Mean(|s(ab, vb)[1] ◦ s(ab, vb)[2]|) (6.4)

Where ◦ is elementwise multiplication and | · | is the elementwise absolute value function.
[k] mirrors PyTorch slicing notation and refers to selecting the activations for only the kth
attention head. Intuitively, this loss encourages one head to be silent if the other head is
active and is a “cross-term” generalization of the l2 regularizer [272] for encouraging activation
shrinkage. When K > 2 we average contributions from every combination of heads. We
ablate this, and our decision to max-pool heads in Table 6.3.
Stability Regularizers, LStability: Finally, we add several other small regularization terms
to encourage stable convergence. We detail and ablate these terms in the Supplement. Briefly,
these terms include standard regularizers like Total Variation [215] smoothness over time and
non-negative pressure to encourage the network to focus on similarity instead of dissimilarity.
In addition, we add a regularizer to prevent the calibration temperature, γ, from drifting
too quickly, and a regularizer to discourage activations during silence and noise. In the
supplement we show that each regularizer alone does not have a dramatic effect on final
metrics but together they can stop collapses during training.

Combining these losses into a single loss function yields:

L = LA→V + LV→A + λDisLDis + LStability (6.5)

In our experiments we use λDis = 0.05 and refer interested readers to the supplement for
the details of our small stability regularizer, LStability.

6.5.5 Training

In our experiments we train DenseAV and relevant baselines on the AudioSet [273] dataset
for sound prompted segmentation and AudioSet retrieval. We train on the PlacesAudio [274]
dataset for speech prompted segmentation, PlacesAudio retrieval, and the ablation studies
of Table 6.4. In our disentanglement experiments of Table 6.3 and feature visualizations of
Figures 6.1 and 6.2 we train on both AudioSet and PlacesAudio so that DenseAV can be
familiar with both language, the prominent audio signal in PlacesAudio, and more general
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Method Speech Semseg. Sound Semseg.
mAP mIoU mAP mIoU

DAVENet [231] 32.2% 26.3% 16.8% 17.0%
CAVMAE [229] 27.2% 19.9% 26.0% 20.5%
ImageBind [247] 20.2% 19.7% 18.3% 18.1%

Ours 48.7% 36.8% 32.7% 24.2%

Table 6.1: Speech and Sound prompted semantic segmentation. We analyze the
quality of local features using two prompted semantic segmentation tasks. We prompt
networks with speech of the form “a picture of a(n) [Object]” to determine whether local
feature inner products can segment objects in the ADE20K dataset by name. We create sound
prompts for a given ADE20K class using a curated mapping from the ADE20K ontology
to the VGGSound ontology. DenseAV’s local features perform significantly better than all
baselines investigated. We bold “first place” results and underline “second place” results.

sounds from AudioSet. In these experiments we sample training data from these two corpora,
so each batch has an even split between AudioSet and PlacesAudio.
Warming up Aligners: We find that we can dramatically improve the stability by first
training the added aligners (convolutions and layer norms) for 3000 steps while keeping
pretrained DINO and HuBERT backbones fixed. This allows the aligners to adapt to these
intelligent backbones before modifying each backbone’s sensitive weights. We use random
resize crops, color jitter, random flips, and random greyscaling as image augmentations. We
randomly sample a single video frame to feed to our visual branch. Audio clips are converted
to single-channel format and are trimmed or padded with silence to create uniform 10 second
clips. We re-sample audio clips according to the requirements of the backbone models used.
For HuBERT, we re-sample to 16KhZ. We train on 8 V100 GPUs with an effective batch
size of 80, and aggregate negative samples on all GPUs prior to computing the loss to ensure
efficient parallelization. We provide additional training information and hyperparameters in
the supplement.
Full Training: After warming up the aligners, we train the full model for an additional
800,000 steps using the same loss, batch-size, and training logic. We train all aligner weights
and fine-tune all HuBERT audio backbone weights. We use low rank adaptation (LoRA) [275]
to fine-tune the “Q”, “K”, and “V” layers of the DINO visual backbone attention blocks. This
allows us to efficiently adapt DINO and stabilize the training as it is quite easy to collapse
the carefully trained DINO weights. We use a LoRA rank of 8.

6.6 Experiments

To evaluate AV representation quality, we perform a variety of analyses including comparative
activation visualization, quantitative measurements of speech and sound prompted semantic
segmentation, and cross-modal retrieval. Additionally, we quantify our observation that
DenseAV can distinguish the meanings of words (language), from the sounds of objects
(sound) without supervision.
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To adequately measure a representation’s AV alignment quality, we found it necessary
to introduce two evaluation datasets that measure speech and sound prompted semantic
segmentation performance. Our two datasets introduce pairs of speech and sound prompts
coupled with matching images and segmentation masks derived from ADE20K. We create
these datasets because previous works [231] have not published their datasets or evaluation
code. However, we use an experimental setting from the literature for our cross-modal
retrieval experiments.

We compare against a variety of prior art including the popular state-of-the art multi-
modal retrieval network, ImageBind [247]. We also compare against CAVMAE [229], a
leading multimodal backbone trained specifically for AudioSet retrieval, and DAVENet [231],
which is trained to localize the meanings of words. We include two other baselines [254, 274]
which have reported cross modal retrieval metrics on Places Audio. Finally, we compare
our multi-head aggregation strategy to common “global” retrieval methods such as inner
products between class-tokens, average-pooled tokens, and SimPooled[265] tokens. We note
that SimPool achieves state-of-the-art localization results when compared to 14 other pooling
methods. Nevertheless, our multi-head aligner yields better localization results than any of
these “global” methods.

6.6.1 Qualitative Comparison of Feature Maps

Our first experiment in Figure 6.2 highlights the dramatic differences in quality between
DenseAV’s features and other approaches in the literature. DenseAV is the only backbone
whose local tokens are semantically meaningful and show cross-modal alignment for speech
and sound. Though both CAVMAE and ImageBind show high-quality retrieval performance,
neither shows high quality aligned local tokens. As a result, DenseAV can associate and
localize both sound and language significantly better than other backbones. DAVENet shows
coarse correspondences between language and visual objects but cannot associate sound
with visual objects and does not match DenseAV’s high resolution maps. Furthermore, the
right half of Figure 6.1 demonstrates that DenseAV naturally discovers and separates word
semantics from the sound of objects without labels to supervise this separation. In the
supplement, we provide additional visualizations of all backbones considered across a wide
range of words and sounds.

6.6.2 Speech Prompted Image Segmentation

Dataset: We introduce a speech prompted segmentation dataset using the ADE20K dataset,
which is known for its comprehensive ontology and pixel-precise annotations [230]. From this
dataset, we curate an evaluation subset of image-class pairs by sampling up to 10 images for
each object class in ADE20K, excluding images where the selected class was tiny (< 5% of
pixels). We only consider classes with at least 2 images that pass the tiny object criterion. For
each class and image, we formed a binary target mask by selecting the semantic segmentation
mask for that class. This resulted in 3030 image-object pairs spanning 478 ADE20K classes.

We created paired speech signals by speaking the prompt “A picture of a(n) [object]”
where [object] is the name of the ADE20K class. We create clear, controlled, and consistent
audio prompts using Microsoft’s neural text to speech service [276]. This service also provides
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Method Places Acc. @10 AudioSet Acc. @10
I → A A → I I → A A → I

[274]* 46.3% 54.8% - -
[254]* 54.2% 56.4% - -

DAVENet [231]* 52.8% 60.4% - -
CAVMAE [229] 81.7% 77.7% 55.7% 50.7%
ImageBind [247] 1.10% 1.10% 64.5% 66.5%

Ours 94.2% 94.3% 69.8% 68.1%

Table 6.2: Cross-modal retrieval using 1000 evaluation videos from the PlacesAudio
and AudioSet validation datasets. DenseAV dramatically outperforms all approaches
tested in all metrics. Most notably, the state-of-the-art image retrieval foundation model,
ImageBind, is incapable of recognizing speech. We note that the ImageBind authors do
not publish retraining code, so we evaluate their largest pretrained model. Models with a
* indicate that they have been previously reported in the literature. Other numbers are
calculated by using pretrained models when available or from training with the author’s
official training scripts.

exact timing of the “[object]” utterance within the broader prompt and ensures each class
is measured equally. Grammar was manually verified for the utterances to ensure proper
singular/plural and a/an agreement with the class name. We release images, masks, and
audio prompts for reproducibility.
Evaluation Measure: We evaluate methods based on how well their speech-prompted
activations align with ground truth masks for the visual object’s class. We quantify this
with the binary Average Precision (AP) and Intersection over Union (IoU) metrics. These
quantify how close activations match with the binary label mask from the ADE20K dataset.
To compute an aggregate score over all of the object classes considered, we compute the mean
average precision (mAP) and mean intersection over union (mIoU) by averaging AP scores
across all object categories considered.

The mAP is particularly well suited for evaluating feature similarities because it is
unaffected by monotonic transformations of the similarity scores. This eliminates the need for
arbitrary thresholding and calibration. This is particularly important because many networks’
inner products are not centered at zero, and the best thresholding strategy can be nontrivial,
and dependent on the network and object class. Average Precision avoids these confounding
factors and ensures a fair comparison across methods. Unfortunately, unlike the mAP, the
mIoU metric requires selecting a threshold. To ensure our mIoU measurement is similarly
invariant to monotonic transformations we evaluate 20 uniformly spaced thresholds between
the smallest and largest activations of each model. For each baseline, we report results for
the best threshold to ensure a fair comparison between all networks considered.
Implementation: We compute image heatmaps by evaluating each modality-specific network
on the image-audio pairs from our dataset. We extract dense features from the final layer
of each network and form their similarity volume according to Equation 6.1. For DenseAV
we max-pool the head dimension to properly compare with single-headed models. We
average activations over the temporal extent of the “[object]” utterance using the word timing
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Method Pred. Dis. Act. Dis.
No LDis, No Head Max Pool 64.1% 70.3%

No LDis 99.9% 86.5%
Ours 99.9% 91.2%

Table 6.3: Quantitative ablation study of the impact of max-pooling attention heads and
adding our disentanglement loss, LDis. Intuitively, max-pooling attention heads allows each
head to specialize on its own specific set of triggers. Our disentanglement loss further
encourages the heads to operate independently and orthogonally.

information from the ground truth audio clip. This creates a heatmap over the image features
that can be bi-linearly resized to the original image’s size. We then compare these per-pixel
activation scores to ground truth object masks from our dataset.
Results: In Speech mAP and mIoU columns of Table 6.1 we show that DenseAV achieves
a 51% (+16.5 mAP) relative increase in speech-prompted semantic segmentation over
previous methods. Approaches that use global token based contrastive strategies such as
CAVMAE and ImageBind perform particularly poorly in this task, and this observation
aligns with the qualitative results of Figure 6.2.

6.6.3 Sound Prompted Image Segmentation

Dataset: To evaluate how well deep features localize sound, we build on Section 6.6.2 and
create a dataset of sound prompts that align with ADE20K classes. We first select the same
(large) image-object pairs from ADE20K. We then create a mapping between the ADE20K
and VGGSound [277] ontologies. To compute a robust mapping, we first embed ADE20K
class names and VGGSound class names with the GPT Ada 2 text embedding model [278].
For each ADE20K class, we create a list of at most three candidates from the VGGSound
ontology that have a cosine similarity (> .85). We then manually review these candidates to
select the best VGGSound class for each ADE20K class and remove any spurious or mistaken
matches. This produces a set of 95 ADE20K classes with strong matches in the VGGSound
ontology. For each of our original 3030 image-object pairs we select a random VGGSound
validation clip with a matching class according to our mapped ontology. This yields 106
image-object pairs across 20 ADE20K classes.
Evaluation Measure: We use the same mAP and mIoU evaluation metrics as Section 6.6.2,
but instead average over the 20 ADE20K classes considered.
Implementation: We compute sound prompted image activations as in section 6.6.2 but
with one key change: we average activations over the entire clip because we do not have
ground-truth sound timing information.
Results: The “Sound mAP and mIoU” columns of Table 6.1 show that DenseAV achieves
a 25% (+6.4mAP) relative improvement in sound prompted segmentation compared to
the prior art. Most notably, ImageBind’s features cannot localize sound despite their high
cross-modal retrieval performance learned from millions of hours of sound.
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Method Speech mAP Places Acc. @10
V → A A → V

Average Pool 20.1% 92.0% 91.2%
CLS Token 20.6% 86.4% 89.8%

SimPool [265] 35.3% 92.6% 92.8%
Multi-Head (Ours) 48.2% 93.5% 93.8%

Table 6.4: Quantitative ablation of different feature aggregation strategies. Though the
common practice of average pooling and using a learned CLS token to aggregate features
have little effect on retrieval performance, they dramatically degrade performance on speech
prompted semantic segmentation.

6.6.4 Cross-Modal Retrieval

We show that DenseAV’s representations are not only better for localization, but significantly
outperform other approaches on cross-modal retrieval. We adopt the evaluation setting
of [231] and measure cross modal retrieval accuracy at 1, 5, and 10 in a thousand-way retrieval
task. In particular, we use the same thousand images from the validation set of [231] and
also replicate this analysis on one-thousand random clips from the AudioSet validation data.
Table 6.2 shows results for 1000-way retrieval tasks on both the Places Audio and AudioSet
datasets. We show cross-modal accuracy at 10, but also show larger tables in the supplement
that echo these results using accuracy at 1 and 5. DenseAV significantly outperforms all
baselines across all metrics. Interestingly, DenseAV outperforms ImageBind with less than
half of the trainable parameters and no reliance on text.

6.6.5 Measuring Disentanglement

We observe that DenseAV’s heads naturally learn to differentiate audio-visual couplings
that capture the meaning of words (language) and those that capture the sounds of objects
(sound). Furthermore this effect generalizes to novel clips, including those with both sound
and language as shown in Figure 6.1. We quantify this observation in two ways, the first
measures if a head’s average activation strength predicts whether a clip contains mainly
“language” or “sound”. The second method quantifies how often the “sound” head is incorrectly
active when the “language” head should be active and vice versa. We leverage the fact that
AudioSet dataset contains mostly clips with ambient sound and rarely contains language. In
contrast, Places Audio is entirely language-based without external ambient sound. We note
that these analyses are specifically for our architecture with two heads K = 2 and trained on
both AudioSet and PlacesAudio data.

For both measures of disentanglement, we first compute a clip’s aggregated similarity for
each head. In particular, we remove the max-pooling over heads in Equation 6.2 to create a
single-head similarity, S(a, v)k. We then min-max scale the scores of each head across both
datasets to lie in the [0, 1] interval, which we refer to as Ŝ(a, v)k. Using these normalized
scores, we can create metrics that capture how well a given head responds only to a specific
dataset.

Our first metric measures how well a head’s scores predict whether a clip is from the
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“sound” or “language” dataset. Let (ab, vb)
B
1 be tuples of paired audio and visual signals. let

l[k′]b be an indicator variable of whether the signal (ab, vb) arises from the sound dataset,
AudioSet, (k′ = 1), or the language dataset Places Audio (k′ = 2).

δpred(k, k
′) = AP

(
(Ŝ(ab, vb)k)B1 , (l[k′]b)B1

)
(6.6)

Where AP (·, ·) is the binary average precision with prediction and label arguments
respectively. Intuitively, this measures whether the scores of head k are direct predictors of
whether the data is from dataset k′. We can find the best assignment between heads and
datasets such that each head is maximally predictive of the given dataset:

PredDis =
1

2
max (δpred(0, 0) + δpred(1, 1), δpred(1, 0) + δpred(0, 1)) (6.7)

The prediction disentanglement score, PredDis, is a percentage that ranges from 50%
for completely entangled signals to 100% if one can perfectly classify the signals using the
scores of either head. The maximum over the two possible assignments makes this metric
invariant to permutations of the heads. We note that this metric, just like that of Chapter
4, is a Hungarian matching assignment [279] over two entries, a common technique to asses
unsupervised classification performance [250, 253].

Our second measure quantifies “spurious activations” in the non-dominant head. A truly
disentangled system should have a head that only fires on sound, and another head that only
fires on language. We create another disentanglement measure, ActDis, by replacing δpred in
Equation 6.7 with:

δact(k, k
′) = 1− 1∑

b′ l[k
′]b′

B∑
b=1

Ŝ(ab, vb)k · l[k′]b (6.8)

Intuitively, this measures the “inactivity” of head k on dataset k′. If head k is totally silent
on dataset k′ then δact(k, k′) = 1. Like PredDis, ActDis is a percentage ranging from 50% to
100% with 100% representing perfect disentanglement where the sound head is completely
silent during the language clips, and vice versa.

Table 6.3 shows that DenseAV achieves near perfect predictive (99%) and activation
(91%) disentanglement. It also shows that our disentanglement regularizer and max-pooling
over heads improves DenseAV’s natural ability to distinguish sound from language without
supervision.

6.7 Chapter Conclusion

We presented DenseAV, a novel contrastive learning architecture that can discover the
meaning of words and localize the sounds of objects using only video supervision. We are
the first to observe both qualitatively and quantitatively that it’s possible to disentangle
the meaning of words from the sound of objects with only a contrastive learning signal.
DenseAV’s success stems from its novel multi-head attention aggregation mechanism that
encourages its modality-specific backbones to create high-resolution, semantically meaningful,
and AV aligned representations. These properties of DenseAV’s representation are not seen in
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other state-of-the-art models in the literature. Consequently, DenseAV significantly surpasses
other leading models in dense prediction tasks such as speech and sound-prompted semantic
segmentation as well as in cross-modal retrieval.
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Chapter 7

An Axiomatic Theory Connecting Model
Explainability, Game Theory, and
Feature Relationships

Figure 7.1: Architectures for search engine interpretability. Like classifier explanations,
First-order search explanations yield heatmaps of important pixels for similarity (bottom
row third column). Second order search interpretation methods yield a dense correspondence
between image locations (last two columns). CAM (second column) is a particular case
of Shapley value approximation, and we generalize it to yield dense correspondences (last
column).

7.1 Website and Video

For a quick video overview and blog post of this chapter, see https://mhamilton.net/axiomatic.html
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7.2 Chapter Summary

Visual search, recommendation, and contrastive similarity learning power technologies that
impact billions of users worldwide. Chapters 3, 4, and 6 all show that inner-products between
deep features derived from these systems have the unexpected ability to connect related
objects across huge gaps, in time, artistic media, image context, and modality respectively.
But the question remains: Why do these objects have this ability to visualize these connections
at high spatial resolution when they are not trained with object localization supervision? We
answer this question by introducing a theory connecting model explainability, cooperative
game theory, and deep feature relationships. In short, this chapter shows that the feature
correspondences at the heart of Chapters 3, 4, and 6, are precisely the unique way to
“distribute the credit” for the prediction across the features.

More precisely, we show that the theory of fair credit assignment provides a unique
axiomatic solution that generalizes several existing recommendation- and metric-explainability
techniques in the literature. Modern model architectures can be complex and difficult to
interpret, and there are several competing techniques one can use to explain a search engine’s
behavior. Using this formalism, we show when existing approaches violate “fairness” and derive
methods that sidestep these shortcomings and naturally handle counterfactual information.
More specifically, we show existing approaches implicitly approximate second-order Shapley-
Taylor indices and extend CAM, GradCAM, LIME, SHAP, SBSM, and other methods to
search engines. These extensions can extract pairwise correspondences between images from
trained opaque-box models. We also introduce a fast kernel-based method for estimating
Shapley-Taylor indices that require orders of magnitude fewer function evaluations to converge.
Finally, we show that these game-theoretic measures yield more consistent explanations for
image similarity architectures.

7.3 Introduction

Search, recommendation, retrieval, and contrastive similarity learning powers many of today’s
machine learning systems. These systems help us organize information at scales that no human
could match. Furthermore, chapters 4, and 6 provide examples of how dense representations
from these systems seem to capture detailed local relationships between objects even though
no human gave them localization supervision. This chapter seeks to explain this mystery. In
solving this, this chapter discovers a rich theoretical framework linking these inner products
between representations with cooperative game theory and higher-order explanations of model
behavior.

This theory not only explains the success of methods from previous chapters, but provides
new insights to improve how we understand what search engines and recommendation systems
learn. This is especially important given the recent surge in million and billion parameter
contrastive learning architectures for vision and language, which underscore the growing
need to understand these classes of systems [100, 280–283]. Like classifiers and regressors,
contrastive systems face a key challenge: richer models can improve performance but hinder
interpretability. In high-risk domains like medicine, incorrect search results can have serious
consequences. In other domains, search engine bias can disproportionately and systematically
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hide certain voices [284–286].
Currently, there are several competing techniques to understand a similarity model’s

predictions [287–291]. However, there is no agreed “best” method and no a formal theory
describing an “optimal” search explanation method. We show that the theory of fair credit
assignment provides a uniquely determined and axiomatically grounded approach for “explain-
ing” a trained model’s similarity judgements. In many cases, existing approaches are special
cases of this formalism. This observation allows us to design variants of these methods that
better satisfy the axioms of fair credit assignment and can handle counterfactual or relative
explanations. Though we explore this topic through the lens of visual search, we note that
these techniques could also apply to text, tabular, or audio search systems.

This work identifies two distinct classes of search engine explainability methods. “First
order” approaches highlight the most important pixels that contribute to the similarity of
objects and “Second order” explanations provide a full correspondence between the parts
of query and retrieved image. We relate first order interpretations to existing theory on
classifier explainability through a generic function transformation, as shown in the third
column of Figure 7.1. We find that second order explanations correspond to a uniquely
specified generalization of the Shapley values [292] and is equivalent to projecting Harsanyi
Dividends onto low-order subsets [293]. We use this formalism to create new second-order
generalizations of Class Activation Maps [294], GradCAM [290], LIME [295], and SHAP [296].
Our contributions generalize several existing methods, illustrate a rich mathematical structure
connecting model explainability and cooperative game theory, and allow practitioners to
understand search engines with greater nuance and detail. We include a short video detailing
the work at https://aka.ms/axiomatic-video. In summary we:

• Present the first uniquely specified axiomatic framework for model-agnostic search,
retrieval, and metric learning interpretability using the theory of Harsanyi dividends.

• Show that our framework generalizes several existing model explanation methods [287,
290, 294, 295] to yield dense pairwise correspondences between images and handle
counterfactual information.

• Introduce a new kernel-based approximator for Shapley-Taylor indices that requires
about 10× fewer function evaluations.

• Show that our axiomatic approaches provide more faithful explanations of image
similarity on the PascalVOC and MSCoCo datasets.

7.4 Background

This work focuses on search, retrieval, metric learning, and recommendation architectures.
Often, these systems use similarity between objects or learned features [21] to rank, retrieve,
or suggest content [15, 240, 282, 297]. More formally, we refer to systems that use a distance,
relevance, or similarity function of the form: d : X × Y → R to quantify the relationship
between items from sets X and Y . In search and retrieval, X represents the space of search
queries and Y represents the space of results, the function d assigns a relevance to each query
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Figure 7.2: Comparison of first-order search interpretation methods which highlight pixels
that contribute to similarity in red. Integrated Gradients (on pixels) struggles because well
trained classifiers are invariant to minor pixel changes and have uninformative gradients.

result pair. Without loss of generality, we consider d as a “distance-like” function where
smaller values indicate more relevance. The expression argminy∈Y d(x, y) yields the most
relevant result for a query x ∈ X .

Specializing this notion yields a variety of different kinds of ML systems. If X = Y =
Range(N (·)) whereN is an image featurization network such as ResNet50 [121], the formalism
yields a visual search engine or “reverse image search”. Though this work focuses on visual
search, we note that if X is the space of character sequences and Y is the space of webpages,
this represents web search. In recommendation problems, X are users and Y are items, such
as songs or news articles. In this work we aim to extract meaningful “interpretations” or
“explanations” of the function d.

7.4.1 Model Interpretability

The Bias-Variance trade-off [298] affects all machine learning systems and governs the rela-
tionship between a model’s expressiveness and generalization ability. In data-rich scenarios,
a model’s bias dominates generalization error and increasing the size of the model class can
improve performance. However, increasing model complexity can degrade model interpretabil-
ity because added parameters can lose their connection to physically meaningful quantities.
This affects not only classification and regression systems, but search and recommendation
architectures as well. For example, the Netflix-prize-winning “BellKor” algorithm [299],
boosts and ensembles several different methods making it difficult to interpret through model
parameter inspection alone.

To tackle these challenges, some works introduce model classes that are naturally inter-
pretable [300, 301]. Alternatively, other works propose model-agnostic methods to explain the
predictions of classifiers and regressors. Many of these approaches explain the local structure
around a specific prediction. [296] show that the Shapley value [302], a measure of fair credit
assignment, provides a unique and axiomatically characterized solution to classifier inter-
pretability (SHAP). Furthermore, they show that Shapley values generalize LIME, DeepLIFT
[303], Layer-Wise Relevance Propagation [304], and several other methods [305–308]. Many
works in computer vision use an alternative approach called Class Activation Maps (CAMs).
CAM projects the predicted class of a deep global average pooled (GAP) convolutional
network onto the feature space to create a low resolution heatmap of class-specific network
attention. GradCAM [290] generalizes CAM to architectures other than GAP and can explain
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a prediction using only a single network evaluation. In Section 7.6 we show that CAM,
GradCAM, and their analogue for search engine interpretability, [287], are also unified by the
Shapley value and its second order generalization, the Shapley-Taylor index.

7.4.2 Fair Credit Assignment and the Shapley Value

Shapley values provide a principled and axiomatic framework for classifier interpretation. We
briefly overview Shapley values and point readers to [309] for more detail. Shapley values
originated in cooperative game theory as the only fair way to allocate the profit of a company
to its employees based on their contributions. To formalize this notion we define a “coalition
game” as a set N of |N | players and a “value” function v : 2N → R. In cooperative game
theory, this function v represents the expected payout earned by cooperating coalition of
players. [302] show that the unique, fair credit assignment to each player, ϕv(i ∈ N), can be
calculated as:

ϕv(i) :=
∑

S⊆N\{i}

|S|!(|N | − |S| − 1)!

|N |!
(v(S ∪ {i})− v(S)) (7.1)

Informally, this equation measures the average increase in value that a player i brings to
a coalition S by weighting each increase, v(S ∪ {i}) − v(S), by the number of ways this
event could have happened during the formation of the “grand coalition” N . We note
that this assignment, ϕv, is the unique assignment that satisfies four reasonable properties:
symmetry under player re-labeling, no credit assignment to dummy players, linearity
(or it’s alternative monotonicity), and efficiency which states that Shapley values should
sum to v(N)− v(∅) [310]. Intuitively, these axioms require that a fair explanation should
treat every feature equally (Symmetry), should not assign importance to features that are
not used (Dummy), should behave linearly when the value function is transformed (Linear),
and should sum to the function’s value (Efficiency).

Shapley Values provide a principled way to explain the predictions of a machine learning
model. To connect this work to model interpretability, we can identify the “features” used in
a model as the “players” and interpret the value function, v(S), as the expected prediction
of the model when features N \ S are replaced by values from a “background” distribution.
This background distribution allows for “counterfactual” or relative explanations [311].

7.5 Related Work

There is a considerable body of literature on model interpretability and we mention just
a handful of the works that are particularly related. One of our baseline methods, [289],
was one of the first to present a generic visual search engine explanation reminiscent of a
Parzen-Window based estimator. [234] introduce a method for explaining classifiers based
on meaningful perturbation and [312] introduce a method for improving interpretation for
transformer-based classifiers. [287] lifted CAM to search engines and we find that our Shapley-
Taylor based method aligns with their approach for GAP architectures. [313] and [314]
use LIME and DeepSHAP to provide first-order interpretations of text but do not apply
their methods to images. [315] introduce a distribution propagation approach for improving
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Figure 7.3: Explanations relative to a back-
ground distribution show why a result is better
than an alternative. When asked why the best
result (lower left) was better than the second
best result (top right) our method correctly
selects the player.

Figure 7.4: Visualization of how regions of two
similar images “correspond” according to the
second-order search interpretability method
SAM. We can use this correspondence to trans-
fer labels or attention between similar images.

the estimation of Shapley Values for deep models and can be combined with our approach.
Many works implicitly use components that align with Shapley-Taylor indices for particular
functions. Works such as [316–320] use feature correlation layers to estimate and utilize
correspondences between images. We show these layers are equivalent to Shapley-Taylor
indices on the GAP architecture, and this allows create a correlation layer that handles
counterfactual backgrounds. Other recent works have used learned co-attention within
transformer architectures to help pool and share information across multiple domain types
[321]. [322] attempt to learn a variant of GradCAM that better aligns with axioms similar to
Shapley Values by adding efficiency regularizers. The method is not guaranteed to satisfy
the axioms but is more “efficient”.

We rely on several works to extend Shapley values to more complex interactions. [293]
generalized the Shapely value by introducing a “dividend” that, when split and distributed
among players, yields the Shapley values. [323] introduces an equivalent way to extend
Shapley values using a multi-linear extension of the game’s characteristic function. [292]
introduce the Shapley-Taylor index and show is equivalent to the Lagrangian remainder of
Owen’s multi-linear extension. Integrated Hessians [324] enable estimation of a second-order
variant of the Aumann-Shapley values and we use this approach to create a more principled
second-order interpretation method for differentiable search engines.

7.6 Unifying First-Order Search Interpretation Techniques

Though there is a considerable body of work on opaque-box classifier interpretability, opaque-
box search engine interpretability has only recently been investigated [287, 288, 313]. We
introduce an approach to transform opaque and grey-box classification explainers into search
engine explainers, allowing us to build on the rich body of existing work for classifiers. More
formally, given a similarity function d : X × Y → R and elements x ∈ X and y ∈ Y we can
find the “parts” of y that most contribute to the similarity by computing the Shapley values
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for the following value function:

v1(S) : 2
N → R := d(x,mask(y, S)) (7.2)

Where the function mask(·, ·) : Y × 2N → Y, replaces “parts” of y indexed by S with
components from a background distribution. Depending on the method, “parts” could refer
to image superpixels, small crops, or locations in a deep feature map. This formula allows us
to lift many existing approaches to search engine interpretability. For example, let X , and
Y represent the space of pixel representations of images. Let the grand coalition, N , index
a collection of superpixels from the retrieved image y. Let mask(y, S) act on an image y
by replacing the S superpixels with background signal. With these choices, the formalism
provides a search-engine specific version of ImageLIME and KernelSHAP. Here, Shapley
values for each i ∈ S measure the impact of the corresponding superpixel on the similarity
function. If we replace superpixels with hierarchical squares of pixels we arrive at Partition
SHAP [325]. We can also switch the order of the arguments to get an approach for explaining
the query image’s impact on the similarity. In Figure 7.2 we qualitatively compare how
methods derived from our approach compare to two existing approaches: SBSM [289] and
VESM [288], on a pair of images and a MocoV2 based image similarity model. In addition
to generalizing LIME and SHAP we note that this approach generalizes VEDML [287], a
metric-learning adaptation of CAM:

Proposition 7.6.1. Let X = Y = RCHW and represent the space of deep network features
where C,H,W represent a channel, height, and width of the feature maps respectively. Let the
function d :=

∑
cGAP (x)cGAP (y)c. Let the grand coalition, N = [0, H]× [0,W ], index the

spatial coordinates of the image feature map y. Let the function mask(y, S) act on a feature
map y by replacing the features at locations S with a background signal b. Then:

ϕv1((h,w) ∈ N) =
1

HW

∑
c

GAP (x)c(ychw − bchw) (7.3)

Where GAP refers to global average pooling. We defer proof of this and other propositions
to the Supplement. The results of this proposition mirrors the form of VEDML but with an
added term to handle background distributions. These extra terms broaden the applicability
of VEDML and we demonstrate their effect on explanations in Figure 7.3. In particular,
we explain why two guitar players are similar in general (no background distribution),
and relative to the second-best result of a guitar. Without a background, the explanation
focuses on the guitar. However, when the explanation is relative to an image of a guitar
the explanation focuses instead on the “tie-breaking” similarities, like the matching player.
With counterfactual queries one can better understand a model’s rationale behind relative
similarity judgements and this can help in domains such as search engine optimization and
automated medical diagnosis. We refer to Equation 7.3 as the Search Activation Map (SAM)
in analogy with the Class Activation Map. We note that in non-GAP architectures, VEDML
requires Taylor approximating nonlinear components. This heuristic corresponds estimating
the Shapley values for a linear approximation of the true value function. For nonlinear
architectures such as those that use cosine similarity, SAM diverges from Shapley value
theory and hence violates its axioms. We can remedy this by using a Kernel-based Shapley
value approximator [296] and refer to this approach as Kernel SAM.
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Though the Shapley value framework unifies several methods for search engine inter-
pretability, we note that the popular technique GradCAM does not align with Shapley value
theory when applied to our feature-based value function (though it does align with Shapley
values for GAP classifiers). To connect this approach to the theory of fair credit assignment,
we show that GradCAM closely resembles Integrated Gradients (IG) [326], an approximator
to the Aumann-Shapley values [327]:

Proposition 7.6.2. Let v(S) : [0, 1]N → R := f(mask(x, S)) represent soft masking of the
spatial locations of a deep feature map x with the vector of zeros and applying a differentiable
function f . GradCAM is equivalent to Integrated Gradients approximated with a single sample
at α = 1 only if the function f has spatially invariant derivatives:

∀(h,w), (i, j) ∈ N :
∂f(x)

∂xchw
=
∂f(x)

∂xcij

In typical case where f does not have spatially invariant derivatives GradCAM violates the
dummy axiom (see Section 7.4.2) and does not represent an approximation of Integrated
Gradients.

Where α refers to the parameter of IG that blends background and foreground samples.
We note that the Aumann-Shapley values generalize the Shapley value to games where infinite
numbers of players can join finitely many “coalitions”. These values align with Shapley values
for linear functions but diverge in the nonlinear case. Proposition 7.6.2 also shows that in
general GradCAM is sub-optimal and can be improved by considering Integrated Gradients
on the feature space. We refer to this modification to GradCAM as Integrated Gradient
Search Activation Maps or “IG SAM”. We also note that this modification can be applied
to classifier-based GradCAM to yield a more principled classifier interpretation approach.
We explore this and show an example of GradCAM violating the dummy axiom in the
Supplement.

7.7 Second-Order Search Interpretations

Visualizing the pixels that explain a similarity judgement provides a simple way to inspect
where a retrieval system is attending to. However, this visualization is only part of the story.
Images can be similar for many different reasons, and a good explanation should clearly
delineate these independent reasons. For example, consider the pair of images in the left
column of Figure 7.6. These images show two similar scenes of people playing with dogs, but
in different arrangements. We seek not just a heatmap highlighting similar aspects, but a
data-structure capturing how parts of the query image correspond to parts of a retrieved
image. To this end we seek to measure the interaction strength between areas of query
and retrieved images as opposed to the effect of single features. We refer to this class of
search and retrieval explanation methods as “second-order” methods due to their relation
with second-order terms in the Shapley-Taylor expansion in Section 7.7.1.
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7.7.1 Harsanyi Dividends

To capture the notion of interactions between query and retrieved images, we must consider
credit assignments to coalitions of features. [293] formalize this notion with a unique and
axiomatically specified way to assign credit or “Harsanyi Dividends” to every possible coalition,
S, of N players in a cooperative game using the formula:

dv(S) :=

{
v(S) if |S| = 1

v(S)−
∑

T⊊S dv(T ) if |S| > 1
(7.4)

These dividends provide a detailed view of the function’s behavior at every coalition. In
particular, [293] show that Shapley values arise from distributing these dividends evenly
across members of the coalitions, a process we refer to a “projecting” the dividends down.
In this work we seek a second-order analog of the Shapley values, so we generalize the
notion of sharing these dividends between individuals to sharing these dividends between
sub-coalitions. This computation re-derives the recently proposed Shapley-Taylor Indices
[292], which generalize the Shapley values to coalitions of a size k using the discrete derivative
operator. More specifically, by sharing dividends, we can alternatively express Shapley-Taylor
values for coalitions |S| = k as:

ϕk
v(S) =

∑
T :S⊂T

dv(T )(|T |
|S|

) (7.5)

Which states that the Shapley-Taylor indices arise from projecting Harsanyi dividends onto
the kth order terms. We note that this interpretation of the Shapley-Taylor indices is slightly
more flexible than that of [292] as it allows one to define “jagged” fair credit assignments over
just the coalitions of interest. Equipped with the Shapley-Taylor indices, ϕk

v , we can now
formulate a value function for “second-order” search interpretations. As in the first order
case, consider two spaces X , Y equipped with a similarity function d. We introduce the
second-order value function:

v2(S) : 2
N → R := d(mask(x, S),mask(y, S)) (7.6)

Where the grand coalition, N = Lq ∪ Lr, are “locations” in both the query and retrieved
images. These “locations” can represent either superpixels or coordinates in a deep feature
map. Our challenge now reduces to computing Shapley-Taylor indices for this function.

7.7.2 A Fast Shapley-Taylor Approximation Kernel

Though the Harsanyi Dividends and Shapley-Taylor indices provide a robust way to allocate
credit, they are difficult to compute. The authors of the Shapley-Taylor indices provide a
sampling-based approximation, but this requires estimating each interaction term separately
and scales poorly as dimensionality increases. To make this approach more tractable for high
dimensional functions we draw a parallel to the unification of LIME with Shapley values
through a linear regression weighting kernel. In particular, one can efficiently approximate
Shapley values by randomly sampling coalitions, evaluating the value function, and fitting a
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Figure 7.5: Convergence of Shapley-Taylor
estimation schemes with respect to the Mean
Squared Error (MSE) on randomly initial-
ized deep networks with 15 dimensional in-
put. Our strategies (Kernel) converge with
significantly fewer function evaluations.

Figure 7.6: Our Second-order explanation
evaluation strategy. A good method should
project query objects (top left and middle) to
corresponding objects in the retrieved image
(bottom left and middle). When censoring
all but these shared objects (right column)
the search engine should view these images
as similar.

weighted linear map from coalition vectors to function values. We find that this connection
between Shapley values and weighted linear models naturally lifts to a weighted quadratic
estimation problem in the “second-order” case. In particular, we introduce a weighting kernel
for second order Shapley-Taylor indices:

Λ(S) =
|N | − 1(|N |

|S|

)(|S|
2

)
(|N | − |S|)

(7.7)

Using this kernel, one can instead sample random coalitions, evaluate v, and aggregate the
information into weighted quadratic model with a term for each distinct coalition |S| ≤ 2.
This allows one to approximate all Shapley-Taylor indices of k = 2 with a single sampling
procedure, and often requires 10× fewer function evaluations to achieve the same
estimation accuracy. We show this speedup in Figure 7.5 on randomly initialized 15-
dimensional deep networks. A detailed description of this and other experiments in this work
are in the supplement. We find that one can further speed up the method by directly sampling
from the induced distribution (Kernel-Direct) as opposed to randomly sampling coalitions and
calculating weights (Kernel-Weighting). This direct sampling can be achieved by first sampling
the size of the coalition from p(s) ∝ (|N | − 1)/(

(
s
2

)
(|N | − s)) and then randomly sampling a

coalition of that size. When our masking function operates on super-pixels, we refer to this as
the second-order generalization of Kernel SHAP. This also gives insight into the proper form
for a second-order generalization of LIME. In particular we add L1 regularization [328] and
replace our kernel with a local similarity, Λ(S) = exp(−λ|mask(x, S);mask(y, S) − x; y|22)
where “;” represents concatenation, to create a higher-order analogue of LIME. Finally we
note that certain terms of the kernel are undefined due to the presence of

(
s
2

)
and |N | − |S| in

the denominator. These “infinite” weight terms encode hard constraints in the linear system
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and correspond to the efficiency axiom. In practice we enumerate these terms and give them a
very large weight (108) in our regression. We reiterate that our kernel approximator converges
to the same, uniquely-defined, values as prior sampling approaches but requires significantly
fewer function evaluations.

7.7.3 Second-Order Search Activation Maps

In the first-order case, CAM and its search engine generalization, Search Activation Maps,
arise naturally from the Shapley values of our first-order value function, Equation 7.2. To
derive a second order generalization of SAM we now look to the Shapley-Taylor indices of our
second order value function, Equation 7.6, applied to the same GAP architecture described
in Proposition 7.6.1.

Proposition 7.7.1. Let the spaces X , Y and function d be as in Proposition 7.6.1. Let
the grand coalition, N , index into the spatial coordinates of both the query image features
x and retrieved image features y. Let the function mask(y, S) act on a feature map y by
replacing the corresponding features with a background feature map a for query features and b
for retrieved features. Then:

ϕv2({(h,w) ∈ Lq, (i, j) ∈ Lr}) =
1

H2W 2

∑
c

xchwycij − achwycij − xchwbcij + achwbcij (7.8)

We note that the first term of the summation corresponds to the frequently used correla-
tion layer [317–319, 329] and generalizes the “point-to-point” signal in [287]. In particular, our
axiomatically derived version has the extra terms allow counterfactual explana-
tions against different background signals. Like in the first-order case, this closed form
only holds in the GAP architecture. To extend the method in a principled way we use our
second-order kernel approximator and refer to this as second-order KSAM. We also introduce
a generalization using a higher order analogue of Integrated Gradients, Integrated Hessians
[324], applied to our feature maps. We refer to this as second-order IGSAM. In Section E.3
of the Supplement we prove that this approach is proportional to the Shapley-Taylor indices
for the GAP architecture. We can visualize these second-order explanations by aggregating
these Shapley-Taylor indices into a matrix with query image locations as rows and retrieved
locations as columns. Using this matrix, we can “project” signals from a query to retrieved
image. We show a few examples of attention projection using our second-order SAM in
Figure 7.4.

7.8 Experimental Evaluation

First Order Evaluation Evaluating the quality of an interpretability method requires
careful experimental design and is independent from what “looks good” to our human eye. If
a model explanation method produces “semantic” connections between images it should be
because to the underlying model is sensitive to these semantics. As a result, we adopt the
evaluation strategy of [296], which measures how well the model explanation approximates the
expected influence of individual features. In particular, these works calculate each feature’s
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Table 7.1: Comparison of performance of first- and second-order search explanation methods.
Methods introduced in this work are highlighted in pink. *Though SAM generalizes [287] we
refer to it as a baseline. For additional details see Section 7.8
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VES
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GCAM
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SA
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M

M
etr

ic

Ord
er

M
od

el

Model Agnostic Architecture Dependent
DN121 0.18 0.26 0.23 0.24 0.08 0.12 0.12 0.20 0.20

MoCoV2 0.22 0.30 0.28 0.30 0.13 0.19 0.21 0.25 0.25
RN50 0.11 0.16 0.14 0.14 0.04 0.08 0.07 0.11 0.11F

ir
st

VGG11 0.14 0.16 0.15 0.15 0.05 0.09 0.11 0.14 0.14
DN121 0.48 - 0.54 0.54 - - 0.48 0.48 0.49

MoCoV2 0.69 - 0.74 0.74 - - 0.72 0.70 0.71
RN50 0.74 - 0.77 0.77 - - 0.74 0.74 0.74

Fa
it

hf
ul

ne
ss

Se
co

nd

VGG11 0.68 - 0.71 0.71 - - 0.69 0.69 0.70
DN121 - 0.00 0.20 0.00 - 12.8 0.56 0.02 0.00

MoCoV2 - 0.00 0.10 0.00 - 0.46 0.53 0.03 0.00
RN50 - 0.00 0.22 0.00 - 14.9 0.47 0.03 0.00F

ir
st

VGG11 - 0.00 0.27 0.00 - 4.20 0.54 0.05 0.00
DN121 - - 0.14 0.01 - - 0.21 0.03 0.01

MoCoV2 - - 0.13 0.01 - - 0.20 0.02 0.01
RN50 - - 0.06 0.01 - - 0.06 0.01 0.01

In
effi

ci
en

cy

Se
co

nd

VGG11 - - 0.11 0.01 - - 0.22 0.03 0.01
DN121 0.55 - 0.68 0.67 - - 0.68 0.68 0.67

MoCoV2 0.57 - 0.70 0.69 - - 0.70 0.70 0.69
RN50 0.55 - 0.67 0.66 - - 0.69 0.66 0.65m

Io
U

Se
co

nd

VGG11 0.54 - 0.68 0.67 - - 0.72 0.73 0.70

importance, replace the top n% of features with background signal, and measure the effect
on the function. A good model interpretability method should cause the replacement of the
most important features, and hence cause the largest expected change in the function. We
refer to this metric as the “Faithfulness” of an interpretation measure as it directly measures
how well an interpretation method captures the behavior of an underlying model. Figure
E.1 in the Supplement diagrams this process for clarity. In our experiments we blur the
top 30% of image pixels to compute faithfulness. For those methods that permit it, we also
measure how much the explanation violates the efficiency axiom. In particular we compare
the sum of explanation coefficients with the value of v(N) − v(∅) and refer to this as the
“Inefficiency” of the method. For additional details and evaluation code please see Section
E.2 in the Supplement.

Second Order Evaluation In the second-order case we adopt the evaluation strategy
of [324] which introduce a analogous second-order faithfulness measure. In particular, we
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measure how well model explanations approximate the expected interaction between two
features. To achieve this, we select an object from the query image, use the second order
explanation to find the corresponding object in the retrieved image, censor all but these two
objects. We measure the new similarity as a measure of Faithfulness and illustrate this process
in In Figure 7.6. We additionally quantify the inefficiency of several second-order methods
as well as their effectiveness for semantic segmentation label propagation. In particular, we
measure how well the explanation method can project a source object onto a target object.
We treat this as a binary segmentation problem and measure the mean intersection over
union (mIoU) of the projected object with respect to the true object mask. We note that
mIoU is not a direct measurement of interpretation quality, but it can be useful for those
intending to use model-interpretation methods for label propagation [144, 146]. These results
demonstrate that axiomatically grounded model explanation methods such as IG SAM could
offer improvement on downstream tasks. Because human evaluations introduce biases such
as preference for compact or smoothness explanations, we consider Mechanical Turk [330]
studies outside the scope of this work.

Datasets We evaluate our methods on the Pascal VOC [331] and MSCoCo [84] semantic
segmentation datasets. To compute first and second order faithfulness we mine pairs of
related images with shared object classes. We use the MoCo V2 [100] unsupervised image
representation method to featurize the training and validation sets. For each image in the
validation set we choose a random object from the image and find the training image that
contains an object of the same class, a technique similiar to our evaluation strategy for CIR
systems in Chapter 3 [332].

Results In Table 7.1 and Table E.3 of the Supplement we report experimental results for
PascalVOC and MSCoCo respectively. We evaluate across visual search engines created
from four different backbone networks: DenseNet121 [333], MoCo v2 [100], ResNet50 [121],
and VGG11 [334] using cosine similarity on GAP features. As baselines we include VESM,
SBSM, and SAM which generalizes [287]. We note that SBSM was not originally presented
as a second-order method, and we describe how it can be lifted to this higher order setting
in Section E.11 of the Supplement. We also evaluate several existing classifier explanation
approaches applied to our search explanation value functions such as Integrated Gradients
[335] on image pixels, Partition SHAP [325], LIME, Kernel SHAP (KSHAP), and GradCAM
(GCAM) on deep feature maps [290]. For second-order variants of LIME and SHAP we used
the local weighting kernel and our Shapley-Taylor approximation kernel from Section 7.7.2.
Overall, several key trends appear. First, Shapley and Aumann-Shapley based approaches
tend to be the most faithful and efficient methods, but at the price of longer computation
time. One method that strikes a balance between speed and quality is our Integrated Gradient
generalization of CAM which has both high faithfulness, low inefficiency, and only requires
a handful of network evaluations (∼ 102). Furthermore, grey-box feature interpretation
methods like SAM and IG SAM tend to perform better for label propagation. Finally, our
methods beat existing baselines in several different categories and help to complete the space
of higher order interpretation approaches. We point readers to the Section E.2 for additional
details, compute information, and code.
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7.9 Chapter Conclusion

In this work we have presented a uniquely specified and axiomatic framework for model-
agnostic search, retrieval, and metric learning interpretability using the theory of Harsanyi
dividends. We characterize search engine interpretability methods as either “first” or “second”
order methods depending on whether they extract the most important areas or pairwise
correspondences, respectively. We show that Shapley values of a particular class of value
functions generalize many first-order methods, and this allows us to fix issues present in
existing approaches and extend these approaches to counterfactual explanations. For second
order methods we show that Shapley-Taylor indices generalize the work of [287] and use our
framework to introduce generalizations of LIME, SHAP, and GradCAM. We apply these
methods to extract image correspondences from opaque-box similarity models, a feat not yet
presented in the literature. To accelerate estimation higher order Shapley-Taylor indices, we
contribute a new weighting kernel that requires 10× fewer function evaluations. Finally, we
show this game-theoretic formalism yields methods that are more “faithful” to the underlying
model and better satisfy efficiency axioms across several visual similarity methods.
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Chapter 8

I-Con: A Unifying Theory and Periodic
Table of Representation Learning
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[Chen 2021]
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Multimodal SSLUnimodal SSL Supervised LearningCluster LearningDimensionality Reduction Interpretation of Gaps

Figure 8.1: A “periodic” table of representation learning methods unified by the
I-Con framework. By choosing different types of conditional probability distributions over
neighbors, I-Con generalizes over 23 commonly used representation learning methods.

8.1 Website and Video

For a quick video overview and blog post of this chapter, see https://mhamilton.net/icon.html

8.2 Chapter Summary

As the field of representation learning grows, there has been a proliferation of different loss
functions to solve different classes of problems. We introduce a single information-theoretic
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equation that generalizes a large collection of modern loss functions in machine learning. In
particular, we introduce a framework that shows that several broad classes of machine learning
methods are precisely minimizing an integrated KL divergence between two conditional
distributions: the supervisory and learned representations. This viewpoint exposes a hidden
information geometry underlying clustering, spectral methods, dimensionality reduction,
contrastive learning, and supervised learning. In previous chapters we have seen that the
relationships between features are the key to discovering structure in complex systems. This
chapter shows that this is not just a metaphor, but a deep unifying principle that cuts to
the core of machine learning in general. This chapters theoretical framework enables the
development of new loss functions by combining successful techniques from across the literature.
We not only present a wide array of proofs, connecting over 23 different approaches, but we
also leverage these theoretical results to create state-of-the-art unsupervised image classifiers
that achieve a +8% improvement over the prior state-of-the-art on unsupervised classification
on ImageNet-1K. We also demonstrate that I-Con can be used to derive principled debiasing
methods which improve contrastive representation learners. Finally, using the machinery
of this chapter we note that the algorithms of Chapters 4 and 6 fit neatly into our unified
framework as “dense” generalizations of SimCLR and CLIP respectively.

8.3 Introduction

Over the past decade the field of representation learning has flourished, with new techniques,
architectures, and loss functions emerging daily. These advances have powered state-of-the-art
models in vision, language, and multimodal learning, often with minimal human supervision.
Yet as the field expands, the diversity of loss functions makes it increasingly difficult to
understand how different methods relate, and which objectives are best suited for a given
task.

In this work, we introduce a general mathematical framework that unifies a wide range of
representation learning techniques spanning supervised, unsupervised, and self-supervised
approaches under a single information-theoretic objective. Our framework, Information
Contrastive Learning (I-Con), reveals that many seemingly disparate methods includ-
ing clustering, spectral graph theory, contrastive learning, dimensionality reduction, and
supervised classification are all special cases of the same underlying loss function.

While prior work has identified isolated connections between subsets of representation
learning methods, typically linking only two or three techniques at a time [336–340], I-Con is
the first framework to unify over 23 distinct methods under a single objective. This
unified perspective not only clarifies the structure of existing techniques but also provides
a strong foundation for transferring ideas and improvements across traditionally separate
domains.

Using I-Con, we derive new unsupervised loss functions that significantly outperform
previous methods on standard image classification benchmarks. Our key contributions are:

• We introduce I-Con, a single information-theoretic loss that generalizes several major
classes of representation learning.

• We prove 15 theorems showing how diverse algorithms emerge as special cases of I-Con.
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• We use I-Con to design a debiasing strategy that improves unsupervised ImageNet-1K
accuracy by +8%, with additional gains of +3% on CIFAR-100 and +2% on STL-10
in linear probing.

8.4 Related Work

Representation learning spans a wide range of methods for extracting structure from complex
data. We review approaches that I-Con builds upon and generalizes. For comprehensive
surveys, see [21, 341, 342].

Feature Learning aims to derive informative low-dimensional embeddings using super-
visory signals such as pairwise similarities, nearest neighbors, augmentations, class labels,
or reconstruction losses. Classical methods like PCA [343] and MDS [344] preserve global
structure, while UMAP [345] and t-SNE [346, 347] focus on local topology by minimizing
divergences between joint distributions. I-Con adopts a similar divergence-minimization view.

Contrastive learning approaches such as SimCLR [348], CMC [261], CLIP [349], and
MoCo v3 [350] use positive and negative pairs, often built via augmentations or aligned
modalities. I-Con generalizes these losses within a unified KL-based framework, highlighting
subtle distinctions between them. Supervised classifiers (e.g., ImageNet models [351]) also
yield effective features, which I-Con recovers by treating class labels as discrete contrastive
points, bridging supervised and unsupervised learning.

Clustering methods uncover discrete structure through distance metrics, graph partitions,
or contrastive supervision. Algorithms like k-Means [352], EM [353], and spectral clustering
[354] are foundational. Recent methods, including IIC [250], Contrastive Clustering [355],
and SCAN [356], leverage invariance and neighborhood structure. Teacher-student models
such as TEMI [357] and EMA-based architectures [133] enhance clustering further. I-Con
encompasses these by aligning a clustering-induced joint distribution with a target distribution
derived from similarity, structure, or contrastive signals.

Unifying Representation Learning has been explored through connections between
contrastive learning and t-SNE [337, 339], equivalences between contrastive and cross-entropy
losses [338], and relations between spectral and contrastive methods [336, 340]. Other efforts,
like Bayesian grammar models [358], offer probabilistic perspectives. Tschannen et al. [359]
emphasized estimator and architecture design in mutual information frameworks but stopped
short of broader unification.

While prior work links subsets of these methods, I-Con, to our knowledge, is the first to
unify supervised, contrastive, clustering, and dimensionality reduction objectives under a
single loss. This perspective clarifies their shared structure and opens paths to new learning
principles.

8.5 Methods

The I-Con framework unifies multiple representation learning methods under a single loss
function: minimizing the average KL divergence between two conditional “neighborhood
distributions” that define transition probabilities between data points. This information-
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Figure 8.2: Overview of the I-Con framework. (a) Alignment of learned and supervisory
distributions. (b) Common distribution families in I-Con’s formulation.

theoretic objective generalizes techniques from clustering, contrastive learning, dimensionality
reduction, spectral graph theory, and supervised learning. By varying the construction of
the supervisory distribution and the learned distribution, I-Con encompasses a broad class
of existing and novel methods. We introduce I-Con and demonstrate its ability to unify
techniques from diverse areas and orchestrate the transfer of ideas across different domains,
leading to a state-of-the-art unsupervised image classification method.

8.5.1 Information Contrastive Learning

Let i, j ∈ X be elements of a dataset X , with a probabilistic neighborhood function p(j|i)
defining a transition probability. To ensure valid probability distributions, p(j|i) ≥ 0 and∫
j∈X p(j|i) = 1. We parameterize this distribution by θ ∈ Θ, to create a learnable function
pθ(j|i). Similarly, we define another distribution qϕ(j|i) parameterized by ϕ ∈ Φ. The core
I-Con loss function is then:

L(θ, ϕ) =
∫
i∈X

DKL (pθ(·|i)||qϕ(·|i)) =
∫
i∈X

∫
j∈X

pθ(j|i) log
pθ(j|i)
qϕ(j|i)

. (8.1)

In practice, p is typically a fixed “supervisory” distribution, while qϕ is learned by comparing
deep network representations, prototypes, or clusters. Figure 8.2a illustrates this alignment
process. The optimization aligns qϕ with p, minimizing their KL divergence. Although most
existing methods optimize only qϕ, I-Con also allows learning both pθ and qϕ, although one
must take care to prevent trivial solutions.
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8.5.2 Unifying Representation Learning Algorithms with I-Con

Despite the incredible simplicity of Equation 8.1, this equation is rich enough to generalize
several existing methods in the literature simply by choosing parameterized neighborhood
distributions pθ and qϕ as shown in Figure 8.1. We categorize common choices for pθ and qϕ
in Figure 8.2a.

Table 8.1 summarizes some key choices which recreate popular methods from contrastive
learning (SimCLR, MOCOv3, SupCon, CMC, CLIP, VICReg), dimensionality reduction
(SNE, t-SNE, PCA), clustering (K-Means, Spectral, DCD, PMI), and supervised learning
(Cross-Entropy and Harmonic Loss). Due to limited space, we defer proofs of each of these
theorems to the supplemental material. We also note that Table 8.1 is not exhaustive, and we
encourage the community to explore whether other learning frameworks implicitly minimize
Equation 8.1 for some choice of p and q.
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Example: SNE, SimCLR, and K-Means

While I-Con unifies a broad range of methods, we illustrate how different choices of p and q
recover well-known techniques such as SNE, SimCLR, and K-Means. Full details are in the ap-
pendix.

Dim 1
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Figure 8.3: Examples of methods as special
cases of I-Con via different choices of p and q,
with corresponding code-style configurations.

SNE as “neighbors remain neigh-
bors.” Stochastic Neighbor Embedding
(SNE) is a classic example. Given x ∈ Rd×n

with n points in d dimensions, SNE learns
a low-dimensional representation ϕ ∈ Rm×n,
typically m ≪ d. To preserve local struc-
ture, p(j | i) is defined by placing a Gaussian
around each high-dimensional point xi, and
qϕ(j | i) by placing a Gaussian around ϕi.
Minimizing the average KL divergence be-
tween these distributions ensures that points
close in the original space remain close in the
embedded space.

SimCLR as “augmentations of the
same image are neighbors.” Contrastive
learning methods like SimCLR and SupCon
instead use class labels. Here, p(j | i) = 1 if j
is an augmentation of i (and 0 otherwise). In
the embedding space, qϕ(j | i) is defined via
a Gaussian-like distribution based on cosine
similarity. Minimizing their KL divergence
encourages images from the same scene to
cluster together.

K-Means as “points that are close
are members of the same clusters.”
Clustering-based approaches like K-Means
and DCD follow a similar recipe. The distri-
bution p(j | i) is again Gaussian-based in the
original space, while qϕ(j | i) reflects whether
points are assigned to the same cluster in
the learned representation. Minimizing KL
divergence aligns these cluster assignments
with the actual neighborhood structure in
the data. Methods like K-Means include an
entropy penalty to enforce hard probabilis-
tic assignments, as shown in Theorem F.4.2,
whereas methods like DCD do not include it.
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Method Choice of pθ(j | i) Choice of qϕ(j | i)
(A) Dimensionality Reduction

SNE
[346]

Theorem F.2.1
Gaussian over data points, xi

Gaussian over learned low-dimensional points, ϕi

exp(−∥ϕi − ϕj∥2)∑
k ̸=i exp(−∥ϕi − ϕk∥2)

t-SNE
[347]

Corollary 1
exp(−∥xi − xj∥2/2σ2

i )∑
k ̸=i exp(−∥xi − xk∥2/2σ2

i )
Cauchy distribution over ϕi

(1 + ∥ϕi − ϕj∥2)−1∑
k ̸=i(1 + ∥ϕi − ϕk∥2)−1

PCA
[343]

Theorem F.2.2
1[ i = j ]

Wide Gaussian on linear projection features, fϕ(xi)

lim
σ→∞

exp(−∥fϕ(xi)−fϕ(xj)∥
2/2σ2)∑

k ̸=i exp(−∥fϕ(xi)−fϕ(xk)∥2/2σ2)

(B) Contrastive Learning
InfoNCE Loss

[360]
Theorem F.3.1

Gaussian on deep normalized features
exp

(
fϕ(xi)·fϕ(xj)

)
∑

k ̸=i
exp

(
fϕ(xi)·fϕ(xk)

)
Triplet Loss

[361]
Theorem F.3.3

1
Z 1[i and j are a positive pair]

Gaussian on deep features (1 neg. sample, σ → 0)
exp

(
−∥fϕ(xi)−fϕ(xj)∥

2/2σ2
)

∑
k∈{i+, i−}

exp
(
−∥fϕ(xi)−fϕ(xk)∥2/2σ2

)
t-SimCLR, t-SimCNE

[337, 339]
Corollary 2

Student-T on deep features
(1+∥ϕi−ϕj∥

2/ν)−(ν+1)/2∑
k ̸=i(1+∥ϕi−ϕk∥2/ν)−(ν+1)/2

VICReg*
without covariance term

[362]
Theorem F.3.2

Wide Gaussian on learned features

lim
σ→∞

exp(−∥fϕ(xi)−fϕ(xj)∥
2/2σ2)∑

k ̸=i exp(−∥fϕ(xi)−fϕ(xk)∥2/2σ2)

SupCon
[363]

Theorem F.3.4

1

Z
1[i and j have same class]

X-Sample
[336]

Theorem F.3.5

Gaussian on corresponding embeddings
exp

(
gθ(xi) · gθ(xj)

)∑
k ̸=i

exp
(
gθ(xi) ·θ (xk)

)
Gaussian on deep normalized features

exp
(
fϕ(xi) · fϕ(xj)

)∑
k ̸=i

exp
(
fϕ(xi) · fϕ(xk)

)
LGSimCLR

[364]
1

Z
1[xi is among xj ’s k nearest neighbors]

CMC & CLIP
[261]

Theorem F.3.6

1

Z
1[i,j pos. pairs, Vi ̸= Vj ]

exp
(
fϕ(xi) · fϕ(xj)

)∑
k∈Vj

exp
(
fϕ(xi) · fϕ(xk)

)
(C) Supervised Learning

Supervised Cross Entropy
[365]

Theorem F.3.7
Indicator over classes exp

(
fϕ(xi) · ϕj

)∑
k∈C exp

(
fϕ(xi) · ϕk

)
Harmonic Loss

[366]
Theorem F.3.8

1
[
i belongs to class j

] Student-T on deep features and class prototypes

lim
σ→0

(σ2+∥fϕ(xi)−ϕj∥
2)−n∑

k∈C (σ2+∥fϕ(xi)−ϕk∥)−n

Masked Lang. Modeling
[367]

Theorem F.3.9

1

Z
#
[
Context i precedes token j

] exp
(
fϕ(xi) · ϕj

)∑
k∈C exp

(
fϕ(xi) · ϕk

)
(D) Clustering

Probabilistic k-Means
[352]

Theorem F.4.2
Intra-cluster uniform probability Gaussians on datapoints

exp(−∥xi−xj∥
2/2σ2

i )∑
k ̸=i exp(−∥xi−xk∥2/2σ2

i
)

Spectral Clustering
[368]

Corollary 4

m∑
c=1

p
(
fθ(xi) and fθ(xj) in c

)
E[size of cluster c]

Gaussians on spectral embeddings
exp(−∥xi−xj∥

2/2σ2
i )∑

k ̸=i exp(−∥xi−xk∥2/2σ2
i
)

Normalized Cuts
[354]

Theorem F.4.3

Intra-cluster uniform probability weighted
by degree

m∑
c=1

p
(
fθ(xi) and fθ(xj) in c

)
· dj

E[degree of cluster c]

Gaussians on graph weigths
exp(wij/dj)∑
k exp(wik/dk)

PMI Clustering
[357]

Theorem F.4.4

1

k
1[j is k-NN of i]

Intra-Cluster Uniform Probability
m∑

c=1

p
(
fθ(xi) and fθ(xj) in c

)
E[size of cluster c]

Debaised InfoNCE Clustering
(ours)

Debiased Graph through Uniform
Distribution and Neighbor Propagation

m∑
c=1

(1 − α)p
(
fθ(xi) and fθ(xj) in c

)
E[size of cluster c]

+
α

N

Table 8.1: I-Con unifies representation learners under different choices of pθ(j|i) and
qϕ(j|i). Proofs of the propositions in this table can be found in the supplement.
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Figure 8.4: Neighborhood adaptation in continuous and discrete settings. (a)
Distance-based distributions modulate neighborhood “width” via parameters such as σ. (b)
Graph-based approaches modify the connectivity directly, often via random walks or added
edges, thereby broadening each node’s neighborhood.

8.5.3 Creating New Representa-
tion Learners with I-Con

The I-Con framework unifies various approaches to representation learning under a single
mathematical formulation and, crucially, facilitates the transfer of techniques among different
domains. For instance, a trick from contrastive learning can be applied to clustering—or vice
versa. In this chapter, we demonstrate how surveying modern representation methods enables
the development of clustering and unsupervised classification algorithms that surpass previous
performance levels. Specifically, we integrate insights from spectral clustering, t-SNE, and
debiased contrastive learning [369] to build a state-of-the-art unsupervised image classification
pipeline.

Debasing

Debiased Contrastive Learning (DCL) addresses the mismatch caused by random negative
sampling in contrastive learning, especially when the number of classes is small. Randomly
chosen negatives can turn out to be positives, introducing spurious repulsive forces between
similar examples. [369] rectify this by subtracting out such false repulsion terms and boosting
attractive forces, substantially improving representation quality. However, their method
modifies the softmax itself, implying that qj|i is no longer a genuine probability distribution
and making it more difficult to extend the approach to clustering or supervised tasks.

Our view, grounded in the I-Con framework, suggests a simpler and more general al-
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ternative: rather than adjusting the learned distribution qj|i, we incorporate additional
“uncertainty” directly into the supervisory distribution p(j|i). This preserves qj|i as a valid
distribution and keeps the method applicable to tasks beyond contrastive learning.

Debiasing through a Uniform Distribution

Our first example adopts a simple uniform mixture:

p̃(j|i) = (1− α) p(j|i) +
α

N
,

where N is the local neighborhood size, and α specifies the degree of mixing. This approach
assigns a small probability mass α

N
to each “negative” sample, thereby mitigating overconfident

allocations. In supervised contexts, this is analogous to label smoothing [370]. In contrast,
[369] adjust the softmax function itself while retaining one-hot labels.

Another way to view this method is through the lens of heavier-tailed or broader dis-
tributions. By adding a uniform component, we mirror the idea in t-SNE’s Student-t
distribution [347], which allocates greater mass to distant points. In both cases, expanding
the distribution reduces the chance of overfitting to a narrowly defined set of neighbors.

Empirical results in Tables 8.3, Figures 8.5, and 8.6 show that this lightweight modification
consistently improves performance across various tasks and batch sizes. It also “relaxes”
overconfident distributions, much like label smoothing in supervised cross entropy, thereby
guarding against vanishing gradients.

Debiasing through Neighbor Propagation

A second strategy applies graph-based expansions. As shown in Table 8.1, replacing k-Means’
Gaussian neighborhoods with degree-weighted k-nearest neighbors recovers spectral clustering,
which is known for robust, high-quality solutions. Building on this idea, we train contrastive
learners with KNN-based neighborhood definitions. Given the nearest-neighbor graph, we
can further expand it by taking longer walks, analogous to Word-Graph2Vec or tsNET [371,
372], a process we term neighbor propagation.

Formally, let P be the conditional distribution matrix whose entries Pij = p(xj | xi) define
the probability of selecting xj as a neighbor of xi. Interpreting P as the adjacency matrix of
the training data, we can smooth it by summing powers of P up to length k:

P̃ ∝ P + P 2 + · · ·+ P k.

We can further simplify this by taking a uniform distribution over all points reachable
within k steps, denoted by:

P̃U ∝ I
[
P + P 2 + · · ·+ P k > 0

]
,

where I[·] is the indicator function. This walk-based smoothing broadens the effective
neighborhood, allowing the model to learn from a denser supervisory signal.

Tables 8.3 and 8.4 confirm that adopting such a propagation-based approach yields
significant improvements in unsupervised image classification, underscoring the effectiveness
of neighborhood expansion as a debiasing strategy.

125



Figure 8.5: Left: Debiasing cluster learning improves performance on ImageNet-1K across
batch sizes. Center: Distribution of maximum predicted probabilities for the biased model
(α = 0) showing poor calibration, with overconfident predictions. Right: Distribution of
maximum predicted probabilities for the debiased model (α = 0.4), demonstrating improved
probability calibration. Debiased training alleviates optimization stiffness by reducing the
prevalence of saturated logits, mitigating vanishing gradient issues, and fostering more robust
and well-calibrated learning dynamics.

8.6 Experiments

In this section, we demonstrate that the I-Con framework offers testable hypotheses and
practical insights into self-supervised and unsupervised learning. Rather than aiming only for
state-of-the-art performance, our goal is to show how I-Con can enhance existing unsupervised
learning methods by leveraging a unified information-theoretic approach. Through this
framework, we also highlight the potential for cross-pollination between techniques in varied
machine learning domains, such as clustering, contrastive learning, and dimensionality
reduction. This transfer of techniques, enabled by I-Con, can significantly improve existing
methodologies and open new avenues for exploration.

We focus our experiments on clustering because it is relatively understudied compared to
contrastive learning, and there are a variety of techniques that can now be adapted to this
task. By connecting established methods such as k-Means, SimCLR, and t-SNE within the
I-Con framework, we uncover a wide range of possibilities for improving clustering methods.
We validate these theoretical insights experimentally, demonstrating the practical impact of
I-Con.

We evaluate the I-Con framework using the ImageNet-1K dataset [35], which consists
of 1,000 classes and over one million high-resolution images. This dataset is considered one
of the most challenging benchmarks for unsupervised image classification due to its scale
and complexity. To ensure a fair comparison with prior works, we strictly adhere to the
experimental protocol introduced by [357]. The primary metric for evaluating clustering
performance is Hungarian accuracy, which measures the quality of cluster assignments by
finding the optimal alignment between predicted clusters and ground truth labels via the
Hungarian algorithm [250]. This approach provides a robust measure of clustering performance
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in an unsupervised context, where direct label supervision is absent during training.
For feature extraction, we utilize the DiNO pre-trained Vision Transformer (ViT) models in

three variants: ViT-S/14, ViT-B/14, and ViT-L/14 [373]. These models are chosen to ensure
comparability with previous work and to explore how the I-Con framework performs across
varying model capacities. The experimental setup, including training protocols, optimization
strategies, and data augmentations, mirrors those used in TEMI to ensure consistency in
methodology.

The training process involved optimizing a linear classifier on top of the features extracted
by the DiNO models. Each model was trained for 30 epochs, using ADAM [374] with a batch
size of 4096 and an initial learning rate of 1e-3. We decayed the learning rate by a factor of
0.5 every 10 epochs to allow for stable convergence. We do not apply additional normalization
to the feature vectors. During training, we applied a variety of data augmentation techniques,
including random re-scaling, cropping, color jittering, and Gaussian blurring, to create
robust feature representations. Furthermore, to enhance the clustering performance, we
pre-computed global nearest neighbors for each image in the dataset using cosine similarity.
This allowed us to sample two augmentations and two nearest neighbors for each image in
every training batch, thus incorporating both local and global information into the learned
representations. We refer to our derived approach as “InfoNCE Clusting” in Table 8.2. In
particular, we use a supervisory neighborhood comprised of augmentations, KNNs (k = 3),
and KNN walks of length 1. We use the “shared cluster likelihood by cluster” neighborhood
from k-Means (See table 8.1 for a more detailed Equation) as our learned neighborhood
function to drive cluster learning.

8.6.1 Baselines

We compare our method against several state-of-the-art clustering methods, including TEMI,
SCAN, IIC, and Contrastive Clustering. These methods rely on augmentations and learned
representations, but often require additional regularization terms or loss adjustments, such as
controlling cluster size or reducing the weight of affinity losses. In contrast, our I-Con-based
loss function is self-balancing and does not require such manual tuning, making it a cleaner,
more theoretically grounded approach. This allows us to achieve higher accuracy and more
stable convergence across three different-sized backbones.

8.6.2 Results

Table 8.2 compared the Hungarian accuracy of Debiased InfoNCE Clustering across different
DiNO variants (ViT-S/14, ViT-B/14, ViT-L/14) and several other modern clustering methods.
The I-Con framework consistently outperforms the prior state-of-the-art method across all
model sizes. Specifically, for the DiNO ViT-B/14 and ViT-L/14 models, debiased InfoNCE
clustering achieves significant performance gains of +4.5% and +7.8% in Hungarian accuracy
compared to TEMI, the prior state-of-the-art ImageNet clusterer. We attribute these
improvements to two main factors:

Self-Balancing Loss: Unlike TEMI or SCAN, which require hand-tuned regularizations
(e.g., balancing cluster sizes or managing the weight of affinity losses), I-Con’s loss function
automatically balances these factors without additional regularization hyper-parameter
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Method DiNO ViT-S/14 DiNO ViT-B/14 DiNO ViT-L/14

k-Means 51.84 52.26 53.36
Contrastive Clustering 47.35 55.64 59.84
SCAN 49.20 55.60 60.15
TEMI 56.84 58.62 –
InfoNCE Clust. (Ours) 57.8 ± 0.26 64.75 ± 0.18 67.52 ± 0.28

Table 8.2: Comparison of methods on ImageNet-1K clustering with respect to Hungarian
Accuracy. Debiased InfoNCE Clustering significantly outperforms the prior state-of-the-art
TEMI. Note that TEMI does not report results for ViT-L.

Method DiNO ViT-S/14 DiNO ViT-B/14 DiNO ViT-L/14

Baseline 55.51 63.03 65.70
+ Debiasing 57.27± 0.07 63.72 ± 0.09 66.87 ± 0.07
+ KNN Propagation 58.45 ± 0.23 64.87 ± 0.19 67.25 ± 0.21
+ EMA 57.8 ± 0.26 64.75 ± 0.18 67.52 ± 0.28

Table 8.3: Ablation study of new techniques discovered through the I-Con framework. We
compare ImageNet-1K clustering accuracy across different sized backbones.

tuning as we are using the exact same clustering kernel used by k-Means. This theoretical
underpinning leads to more robust and accurate clusters.

Cross-Domain Insights: I-Con leverages insights from contrastive learning to refine
clustering by looking at pairs of images based on their embeddings, treating augmentations
and neighbors similarly. This approach, originally successful in contrastive learning, translates
well into clustering and leads to improved performance on noisy high-dimensional image data.

8.6.3 Ablations

We conduct several ablation studies to experimentally justify the architectural improvements
that emerged from analyzing contrastive clustering through the I-Con framework. These
ablations focus on two key areas: the effect of incorporating debiasing into the target and
embedding spaces and the impact of neighbor propagation strategies.

We perform experiments with different levels of debiasing in the target distribution,
denoted by the parameter α, and test configurations where debiasing is applied to the target
side, both sides (target and learned representations), or none. As seen in Figure 8.6, adding
debiasing improves performance, with the optimal value typically around α = 0.6 to α = 0.8,
particularly when applied to both sides of the learning process. This method is similar to
how debiasing work in contrastive learning by assuming that each negative sample has a
non-zero probability (α/N) of being incorrect. Figure 8.5 shows how changing the value of α
improves performance across different batch sizes.

In a second set of experiments, shown in Table 8.4, we examine the impact of neighbor
propagation strategies. We evaluate clustering performance when local and global neighbors
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Method DiNO ViT-S/14 DiNO ViT-B/14 DiNO ViT-L/14

Baseline 55.51 63.03 65.72
+ KNNs 56.43 64.26 65.70
+ 1-walks on KNN 58.09 64.29 65.97
+ 2-walks on KNN 57.84 64.27 67.26
+ 3-walks on KNN 57.82 64.15 67.02

Table 8.4: Ablation Study on Neighbor Propagation. Adding both KNNs and walks of length
1 or 2 on the KNN graph achieves the best performance.
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Figure 8.6: Effects of increasing the debias weight α on the supervisory neighborhood (blue
line) and both the learned and supervisory neighborhood (red line). Adding some amount of
debiasing helps in all cases, with a double debiasing yielding the largest improvements.

are included in the contrastive loss computation. Neighbor propagation, especially at small
scales (s = 1 and s = 2), significantly boosts performance across all model sizes, showing the
importance of capturing local structure in the embedding space. Larger neighbor propagation
values (e.g., s = 3) offer diminishing returns, suggesting that over-propagating neighbors may
dilute the information from the nearest, most relevant points. Note that only DiNO-L/14
showed preference for large step size, and this is likely due to its higher k-nearest neighbor
ability, so the augmented links are correct.

Our ablation studies highlight that small adjustments in the debiasing parameter and
neighbor propagation can lead to notable improvements that achieve a state-of-the-art
result with a simple loss function. Additionally, sensitivity to α and propagation size varies
across models, with larger models generally benefiting more from increased propagation but
requiring fine-tuning of α for optimal performance. We recommend using α ≈ 0.6 to α ≈ 0.8
and limiting neighbor propagation to small values for a balance between performance and
computational efficiency.
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8.7 Chapter Conclusion

In summary, we have developed I-Con: a single information-theoretic equation that unifies
a broad class of machine learning methods. We provide over 15 theorems that prove this
assertion for many of the most popular loss functions used in clustering, spectral graph theory,
supervised and unsupervised contrastive learning, dimensionality reduction, and supervised
classification and regression. We not only theoretically unify these algorithms but show that
our connections can help us discover new state-of-the-art methods, and apply improvements
discovered for a particular method to any other method in the class. We illustrate this by
creating a new method for unsupervised image classification that achieves a +8% improvement
over prior art. We believe that the results presented in this work represent just a fraction of
the methods that are potentially unify-able with I-Con, and we hope the community can use
this viewpoint to improve collaboration and analysis across algorithms and machine learning
disciplines.
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Chapter 9

Conclusion

9.1 Retrospective on the Central Hypothesis

This thesis aimed to understand how to create algorithms that can discover structure in
complex systems without human guidance. Through building systems that can learn without
our guidance, we inch closer to automating the discovery of new scientific knowledge, allowing
us to see further into the unknown than ever before. Each work in this thesis highlights a
simple—but far-reaching—idea: many rich structures of the world can be recovered
without human guidance by analyzing relationships between self-supervised rep-
resentations. In particular, Chapters 3-6 showed that studying the relationships between
deep representations can yield novel and state-of-the-art approaches to:

• Trace artistic motifs across millennia and media (Chapter 3) by finding close pairs of
representations that span these gaps.

• Discover “blind-spots” in generative algorithms where they fail to model the data
(Chapter 3) by analyzing nodes in representation retrieval data-structures.

• Discover visual objects and classify every pixel of the world without human supervi-
sion (Chapter 4) by distilling relationships between representations into a semantic
segmentation system.

• Improve the resolution of any model’s representations by 64× while retaining their
precise semantics (Chapter 5) by analyzing how representations change when we apply
small transformations to the input image.

• Rediscover the meaning of words in a language and the location of sounds (Chapter 6
by comparing dense representations in a contrastive loss.

Not only do we show that relationships between deep representations have significant
practical use, but they provide a powerful theoretical hammer to unify broad swatch of
different techniques both across model explainability and representation learning. These
theoretical analyses of Chapters 7 and 8 show how these relationships can discover fine-
grained semantics about the natural world, and how this notion of considering relationships
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between representations can be used to unify over 23 algorithms across the field of machine
earning. More specifically, Chapter 7, shows that inner products between deep network
representations approximate the “Shapley-Taylor Index”, the unique axiomatically-determined
way to distribute credit for a model’s predictions over its inner representations. This
observation not only yields new algorithms to better explain predictions from search engines
and other retrieval systems, but gives us an understanding for why these comparisons between
representations have the power to “pull blood from the stone” and directly localize information
even when they were never trained to do so. Finally, Chapter 8 shows that relationships
between features form the basis for a single equation that unifies over 20 commonly used
learning objectives into a periodic table of machine learning (Chapter 8). This periodic table
not only unifies many algorithms across the field, but predicts the existence of fundamentally
new algorithms that can learn without human labels. We show that one-such predicted
algorithm yields a new state-of-the-art in unsupervised image classification.

9.2 Future Work

The unifying thread of this thesis has been the pursuit of algorithms and frameworks that
allow us to extract interpretable structure, generate new hypotheses, and automate key steps
in scientific discovery—often in domains where human intuition and ground truth are limited
or inaccessible. Looking ahead, future work will aim to expand the reach and depth of these
approaches: by extending algorithmic discovery to new and challenging real-world systems,
by leveraging advances in large language models to automate broader aspects of the scientific
process, and by further developing unifying theoretical frameworks like I-Con that map out
the landscape of machine learning itself. Together, these directions promise to not only
deepen our understanding of complex phenomena, but also to accelerate the pace of discovery
across scientific disciplines.

9.2.1 Decoding Vocalization of the Atlantic Spotted Dolphin

A core motivation throughout this thesis is the pursuit of algorithms that can reveal in-
terpretable, meaningful structure in complex and poorly understood systems, even in the
absence of explicit human supervision or ground truth. This vision naturally extends to
one of the most challenging and intriguing frontiers for unsupervised discovery: decoding
non-human communication systems.

In ongoing collaborations with marine biologists from the Wild Dolphin Project, we are
applying and adapting the self-supervised and multimodal learning methods developed in this
thesis to the domain of Atlantic spotted dolphin communication. The available data—roughly
50 hours of synchronized underwater audio and video recordings—presents a uniquely rich but
challenging environment, marked by the scarcity of labeled data, the subtlety of behavioral
cues, and the fundamentally different structure of dolphin communication compared to human
language.

Initial experiments transferring dense audio-visual matching techniques like those of
Chapter 6 to this domain revealed significant challenges: models trained solely on dolphin
data performed at chance, highlighting the limits of data efficiency and the differences in
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Figure 9.1: Examples of LLM Spotted Dolphin Behavior from the hours of the Wild Dolphin
Project Dataset

communicative context. To address the lack of extensive human annotation, we are now
leveraging large language models to generate high-coverage semantic labels for each video
frame, spanning dozens of behavioral and environmental attributes. Examples of these LLM
annotations can be seen in Figure 9.1

By reframing the dolphin audio-visual matching task as a contrastive learning problem
against this rich set of automatically generated semantic labels, early results show that the
model can distinguish between key types of dolphin vocalizations (such as whistles and clicks)
and achieve performance well above chance. Visualizations of the learned representations, like
those shown in Figure 9.2, suggest that the models are beginning to organize dolphin signals
according to functionally meaningful behavioral categories—a first step toward identifying
potential “words” or motifs in dolphin communication.

This ongoing work epitomizes the thesis’s central theme: using modern AI to probe the
structure of complex natural phenomena without prior human understanding. The path
forward involves deeper interpretability analysis, integration of temporal and multimodal
information, and close collaboration with domain experts to validate and refine emergent
communication hypotheses. Ultimately, these efforts may not only illuminate the “language”
of dolphins, but also serve as a testbed for developing truly general-purpose algorithms for
scientific discovery in domains where ground truth is fundamentally inaccessible.

9.2.2 Toward Automating Science with Large Language Models

The central theme of this thesis is the development of algorithms that automate aspects
of scientific discovery, ranging from unsupervised extraction of interpretable structure in
complex datasets to the generation of new hypotheses in domains where ground truth is

133



Figure 9.2: Visualization of deep audio representations of dolphin communication colored by
communication type. Deep features have clearly learned to separate echolocation clicks from
whistles in an emergent manner.

unknown. This perspective naturally leads to a broader, emerging question: to what extent
can artificial intelligence systems automate not only pattern-finding, but the very process of
scientific inquiry itself?

Recent advances in large language models (LLMs), such as GPT-4, have brought this
vision closer to reality. Core components of scientific reasoning—including literature synthesis,
data extraction, and hypothesis formation—are increasingly within reach of automation. In
ongoing collaborations, we are investigating the use of LLMs to transform labor-intensive
scientific workflows. In particular, we are conducting studies to evaluate whether LLMs can
largely automate key steps of systematic literature review in environmental health, a field
where the timely and rigorous synthesis of evidence is vital for public decision-making.

These collaborations focus on building semi-automated review pipelines in which LLMs are
deployed to screen abstracts and full texts, extract structured data, and provide transparent
justifications for their selections. Early results suggest that these systems can match or exceed
human performance in tasks such as abstract screening—achieving AUC/AP values above
96% and offering dramatic savings in expert labor. Furthermore, LLMs are demonstrating
promising accuracy in information extraction tasks, laying the groundwork for scientific
reviews that are faster, more reproducible, and more auditable than traditional manual
approaches.

This direction of research forms a natural continuum with the rest of this thesis: from
building algorithms that automate the discovery of structure in raw data, to automating the
broader process of scientific reasoning itself. Looking ahead, we aim to extend these approaches
beyond literature review to encompass ideation, experiment design, and hypothesis generation,
ultimately exploring how AI systems can augment and accelerate the entire scientific process.
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9.2.3 Extending I-Con, Our Unifying Framework for Representation
Learning

A central contribution of this thesis is the unification of a wide array of machine learning
algorithms—ranging from clustering and dimensionality reduction to contrastive and spectral
methods—under the I-Con (Information-Contrastive) framework. By expressing these diverse
approaches as special cases of a single underlying objective, we introduce a “periodic table” of
machine learning that provides both a conceptual map of the field and a practical guide for
discovering new algorithms. A natural avenue for future work is the systematic exploration
and filling of the gaps in this table. Many rows and columns correspond to as-yet-unstudied
combinations of supervision type and representation structure. By exploring these gaps and
empirically validating the resulting methods, we may uncover new approaches with desirable
properties for unsupervised learning, transfer, and interpretability—much as the periodic
table of elements historically predicted the existence of new chemical species before their
discovery.

Another promising direction lies in re-examining the mathematical structure of the I-Con
objective itself. The present framework relies heavily on the Kullback-Leibler (KL) divergence
as the measure of discrepancy between distributions. However, there is no fundamental reason
to restrict attention to this single divergence or metric. Exploring alternative distances—such
as Wasserstein, Jensen-Shannon, or energy-based divergences—could yield unifying views
that extend beyond current applications, potentially connecting the I-Con framework to new
domains such as optimal transport, generative modeling, or robust representation learning.
Such generalizations may not only provide deeper theoretical insight but also lead to the
discovery of algorithms better suited to specific data modalities or learning tasks, revealing
new organizing principles in machine learning.

Finally, the current periodic table is built upon relatively simple mathematical objects:
vectors, clusters, and (to some extent) graph structures or tokens. Yet, scientific data and
learning problems often involve richer and more structured entities, including sets, functions,
manifolds, trees, or even entire programs. Expanding the I-Con framework to incorporate
these higher-order objects would require defining new forms of representation and appropriate
notions of similarity or “friendship.” This could enable the periodic table to accommodate
domains such as program synthesis, symbolic reasoning, or heirarchical methods. This
would further advancing the thesis’s central ambition: to create algorithmic tools capable of
uncovering structure and regularity in even the most complex and underexplored systems. By
extending the I-Con approach along these lines, we open the door to both a deeper theoretical
synthesis of machine learning and powerful new engines for scientific discovery.

9.3 Closing Remarks

Johannes Kepler, working by candlelight, distilled elliptical orbits from painstaking tables of
star positions; Dmitri Mendeleev glimpsed the periodicity of the elements by sorting index
cards on a train ride. Their breakthroughs came not from labeled data sets, but from relentless
scrutiny of relationships in the data. This thesis argues and empirically demonstrates that
modern machine learning can and should emulate this spirit.
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By elevating relationships to first-class citizens in our algorithms, we have shown that
machines can see without bounding boxes, hear without knowledge of text, and more generally
discover taxonomies and classifications of information without human guidance. We show
that focusing on the relationships is not just a metaphor, but rather an observation with the
capability to unify the fields of both model explainability and representation learning.

The road ahead is long, but the guiding principle is clear: If we wish our models to
uncover new science, new art, and new understanding, we must continue to look not at the
isolated points but at the invisible threads that bind them together.
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Appendix A

Appendix for Chapter 3

A.1 Visualizing Failure Cases

Figure A.1 (a) shows how conditioners that do not share a common support can yield low
diversity conditional neighbors. Though sharing a common support is certainly helpful, it
is not mandatory as shown by Figure A.1 (b). Some potential mitigations for these effects
could be to fine tune learned embeddings to promote diverse queries, or to re-weight query
outputs based on diversity. Additionally, an initial alignment with an optimal transport
method could mitigate these effects [375].

Figure A.1: A schematic illustration of how conditional KNN can yield to a lack of diversity
in particular geometries. (a) shows how low diversity can occur when there is no overlap of
supports. Figure (b) shows how support intersection is not necessary for quality alignment
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A.2 Additional Matches

In addition to the matches displayed in Figure 3.1 we provide several additional results.
Figure A.2 shows additional matches for a single query, and Figure A.3 shows matches across
several different queries. Figure A.4 shows random matches to give a sense of the method’s
average-case results.

Figure A.2: Additional conditional image retrieval results on artworks from the Metropolitan
Museum of Art and Rijksmuseum using media (top row text) and culture (bottom row text)
as conditioners.
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Figure A.3: Additional conditional image retrieval results on artworks from the Metropolitan
Museum of Art and Rijksmuseum using top row text as conditioners.
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Figure A.4: Randomly selected conditional image retrieval results on artworks from the
Metropolitan Museum of Art and Rijksmuseum using top row text as conditioners.

140



A.3 Proof of Theorem 1

In the following analysis, suppose an RPTree-Max is built using a dataset X ⊂ RD, of
diameter W , with doubling dimension ≤ d. Furthermore, assume that the size reduction rate
at any given level of the tree is bounded above by γ.

Lemma A.3.1. For any ball, B of radius R > 0 and any 0 < ϵ < 1, there exists a
constant c1 > 0 such that with probability > 1− ϵ, B will be completely inscribed inside of an
RPTree-Max cell of radius no more than c1Rd

√
d log(d)

Proof. We modify the proof of Theorem 12 from [51]. In particular we let ∆∗ = 1
ϵ
c5Rd

√
d log(d),

where c5 refers to the constant of Lemma 11 of [51] The rest of the proof proceeds without
modification.

Lemma A.3.2. For any finite set of balls, {Bi}, with constant radii R > 0, and any 0 < ϵ < 1,
there exists a constant c2 > 0 such that with probability > 1− ϵ, every Bi will be completely
inscribed inside of an RPTree-Max cell of radius no more than c2Rd

√
d log(d)

Proof. We proceed by induction on the number of balls. Lemma A.3.1 provides the base case
of |{Bi}| = 1. For the inductive case we assume the lemma holds for a set {Bi} of size n,
with ϵ′ = ϵ

8
and constant c′2. Given an additional Bn+1, we can leverage our base case to

select an ϵ′′ = ϵ
8

and constant c′′2. We can see that the probability that both events occur
simultaneously is bounded above by:

(1− ϵ′)(1− ϵ′′) = (1− ϵ

8
)(1− ϵ

8
) = 1− ϵ

4
− ϵ2

64
< 1− ϵ

Finally, using the new constant, c2 = max(c′2, c
′′
2), the radii criterion holds for all balls.

Theorem A.3.3. (Restatement of Theorem 1) Suppose an RPTree-Max, T , is built using
a dataset X ⊂ RD, of diameter W , with doubling dimension ≤ d. Further suppose T is
balanced with a cell-size reduction rate bounded above by γ. Let S ⊆ X be a subset of the
dataset used to build the tree and B a finite set of radius R > 0 balls that cover S. For every
0 < ϵ < 1 there exists a constant, c > 0, such that with probability > 1− ϵ the fraction of cells
that contain points within S is bounded above by |B|2−logγ(W/R′) where R′ = cRd

√
d log(d)

Proof. We begin by invoking Lemma A.3.2, which shows that each ball of our covering will
end up completely inscribed within small radii cells of T . For each ball we upper bound their
contribution to the total fraction of cells that contain points within S.

Consider any ball Bi ∈ B in the covering. By Lemma A.3.2 we know this ball is inscribed
within a cell of radius R′. Our goal is to show that this cell must be several levels down in
the tree. By our regularity conditions we know that at each subsequent level of a tree, the
cell size decreases by at most a factor of γ. So to achieve the reduction in size from W to R′,
the cell must lie at or below level logγ(W/R′). At worst, every child of our cell contains a
point within S. Because T is balanced, the ratio of cell children to total cells of the tree is at
most 2−logγ(W/R′). At worst each ball of the cover, B, is in a separate branch of the tree so
combining these contributions yields |B|2−logγ(W/R′).
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Appendix B

Appendix for Chapter 4

B.1 Video and Code

We include a short video description of our work at https://aka.ms/stego-video.
We also provide training and evaluation code at https://aka.ms/stego-code

B.2 Additional Results on the Potsdam-3 Dataset

In addition to our evaluations in Section 4.6.1 we compare STEGO to prior art on the
Potsdam 3-class aerial image segmentation task presented in [93]. In Table B.1 We find that
STEGO is able to achieve +12% accuracy compared to the previous state of the art, IIC. We
show example qualitative results in Figure B.1.

Table B.1: Additional results on the Potsdam-3 aerial image segmentation challenge

Model Unsup. Acc.
Random CNN [93] 38.2

K-Means [58] 45.7
SIFT [123] 38.2

[124] 49.6
[125] 63.9

Deep Cluster [122] 41.7
IIC [93] 65.1

STEGO (Ours) 77.0
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Figure B.1: Qualitative comparison of STEGO segmentation results on the Potsdam-3
segmentation challenge.
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B.3 Additional Ablation Study

In addition to the ablation study of Table 4.2, we investigate the effect of each major
architectural decision in isolation. We find that in most metrics, removing each architectural
component hurts performance.

Table B.2: Additional architecture ablation study on the CocoStuff Dataset (27 Classes).
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Unsupervised Linear Probe
Backbone Acc. mIoU Acc. mIoU
ViT-Small ✓ ✓ ✓ ✓ ✓ ✓ ✓ 48.3 24.5 74.4 38.3
MoCoV2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ 43.1 19.6 65.9 26.0
ViT-Small ✓ ✓ ✓ ✓ ✓ ✓ 42.8 10.3 59.3 19.3
ViT-Small ✓ ✓ ✓ ✓ ✓ ✓ 48.0 23.1 73.9 38.9
ViT-Small ✓ ✓ ✓ ✓ ✓ ✓ 50.2 22.3 73.7 37.7
ViT-Small ✓ ✓ ✓ ✓ ✓ ✓ 47.7 24.0 72.9 38.4
ViT-Small ✓ ✓ ✓ ✓ ✓ ✓ 43.0 20.2 73.0 36.2
ViT-Small ✓ ✓ ✓ ✓ ✓ ✓ 47.0 22.2 74.0 37.7
ViT-Small ✓ ✓ ✓ ✓ ✓ ✓ 39.8 12.8 65.5 29.9
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B.4 Additional Qualitative Results

Figure B.2: Additional unsupervised semantic segmentation predictions on the CocoStuff
27 class segmentation challenge using STEGO (Ours) and the prior state of the art, PiCIE.
Images are not curated.
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B.5 Failure Cases

Unsupervised Segmentation is prone to a variety of issues. We include some of the following
to segmentations to demonstrate cases where STEGO breaks down. In the first column of
Figure B.3 we can see that STEGO improperly segments ground from trees and backgrounds.
In the second column we see that STEGO makes an understandable error and assigns the
barn floor to the “outdoor” class and the barn wall to the “building” class. In the third column
STEGO misses the boundary between wall and ceiling. The fourth column demonstrates the
challenge between food (thing) and food (stuff) characterization. Interestingly PiCIE makes
the same type of error both here, and in the barn case. The last column shows an example of
STEGO missing a human in the lower left. In this image it is challenging to spot the person,
probably because it is grayscale.

Figure B.3: STEGO failure cases.
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B.6 Feature Correspondences Predict STEGO’s Errors

Figure B.4: Normalized matrix of predicted label co-occurrences between an Images and
KNNs. This analysis shows where our unsupervised supervisory signal, the DINO feature
correspondences, fails to align with the CocoStuff27 label ontology.

Section 4.5.1 demonstrates how unsupervised feature correspondences serve as an excellent
proxy for the true label co-occurrence information. In this section we explore how and where
DINO’s feature correspondences systematically differ from the ground truth labels, and show
that these insights allow us to directly predict STEGO’s final confusion matrix.

More specifically we consider the setting of Section 4.5.1. Instead of computing precision-
recall curves from our feature correspondence scores we can instead threshold these scores,
select the strongest couplings between the images, and evaluate whether these couplings
are between objects of the same class or objects of different classes. In particular, Figure
B.4 shows a confusion matrix capturing how well DINO feature correspondences between
images and their K-Nearest Neighbors align with the ground truth label ontology in the
CocoStuff27 dataset. We find that that this analysis predicts many of the areas where the
final STEGO architecture fails. In particular, we can see that DINO conflates the “Food
(things)” and “Food (stuff)” and this error also appears in STEGO’s confusion matrix in
Figure B.6. Likewise both visualizations show confusion between “appliance” and “furniture”,
“window” and “wall”, and several other common errors.
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This analysis demonstrates that many of STEGO’s errors originate from the structure
of the DINO features used to train STEGO as opposed to other aspects of the architecture.
However we note that the question of whether whether this is an issue with the DINO features,
or due to ambiguities in the CocoStuff label ontology is still outstanding. Finally we note
that this analysis is able to predict the results of a fully-trained STEGO architecture, and
could be used as a way to select better backbones without having to training STEGO.
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B.7 Higher Resolution Confusion Matrices

Figure B.5: Confusion Matrix for Cityscapes predictions
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Figure B.6: Confusion Matrix for CocoStuff predictions
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B.8 Relationship with Graph Energy Minimization

In section 4.5.4 we briefly mention that STEGO’s feature correlation distillation loss defined
in Equation 4.4 can be seen as a particular case of Maximum Likelihood (ML) estimation on
a undirected graphical model or Ising model. In this section we demonstrate this connection
in greater detail using the formalism defined in 4.5.4. In particular, we recall the energy for a
Potts model:

E(ϕ) :=
∑

vi,vj∈V

w(vi, vj)µ(ϕ(vi), ϕ(vj)) (B.1)

We then construct the Boltzmann Distribution [130] yields a normalized distribution over
the function space Φ:

p(ϕ|w, µ) = exp(−E(ϕ))∫
Φ
exp(−E(ϕ′))dϕ′ (B.2)

In general, sampling from this probability distribution is difficult because of the often-
intractable normalization factor. However, it is easier to compute the maximum likelihood
estimate (MLE):

argmax
ϕ∈Φ

p(ϕ|w, µ) = argmax
ϕ∈Φ

1

Z
exp(−E(ϕ)) (B.3)

Where Z is the unknown constant normalization factor. Simplifying the right-hand side
yields:

argmax
ϕ∈Φ

p(ϕ|w, µ) = argmin
ϕ∈Φ

E(ϕ) = argmin
ϕ∈Φ

∑
vi,vj∈V

w(vi, vj)µ(ϕ(vi), ϕ(vj)) (B.4)

We are now in the position to connect this to the STEGO loss function. First, we take
our nodes V to be the set of all spatial locations across our entire dataset of images. For
concreteness we can represent v ∈ V by the tuple (n, h, w) where h,w represent height and
width n represents the image number. We now let ϕ(vi) be the output of the segmentation
head, svi , at the image and spatial location vi. Using cosine distance, dcos(x, y) = 1− x

|x|
y
|y|

as the compatibility function, µ, yields the following:

= argmin
S

∑
vi,vj∈V

−w(vi, vj)
svi
|svi |

svj
|svj |

(B.5)

Wherte the argmin now ranges over the parameters of the segmentation head S. We
can now observe that the sum over all pairs vi, vj ∈ V can be written as a sum over pairs of
images x, y ∈ X and pairs of spatial locations (h,w), (i, j) where we note that (i, j) in this
context refers to the spatial coordinates of image y as in 4.5.1 and not the indices of the
vertices.

= argmin
S

∑
x,y∈X

∑
hwij

−W (x, y)hwijS(x, y)hwij (B.6)
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Where we define S(x, y) to be the segmentation feature correlation tensor for images x, y
as defined in Section 4.5.2. Finally letting W (x, y)hwij = Fhwij − b we recover our loss:

argmax
ϕ∈Φ

p(ϕ|w, µ) = argmin
S

∑
x,y∈X

Lsimple−corr(x, y, b) (B.7)

Finally we note that in practice we approximate the minimization using minibatch SGD,
and our inclusion of KNN and Self-correspondence distillation changes the weight function w,
but does not change its functional form.

Switching to the ML formulation of this problem allows us to solve this optimization
for ϕ by gradient descent on the parameters of the segmentation head, S, and makes this
computationally tractable. For large image datasets that can contain millions of high-
resolution images, the induced graph can contain billions of image locations. Other graph
embedding and clustering approaches such as Spectral methods require solving for eigenvalues
of the graph Laplacian, which can take O(|V|3) time [376]. More recent attempts to accelerate
Spectral clustering such as [376] and [377] further assume a “Nonparametric” structure on the
function ϕ, where a separate cluster assignment is learned for each vertex. This assumption
of a “nonparametric” function ϕ can be undesirable as one cannot cluster or embed new data
without recomputing the entire clustering. In contrast, STEGO’s backbone and segmentation
head act as a parametric form for the function ϕ allowing the approach to output predictions
for novel images.
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B.9 Continuous, Unsupervised, and Mini-batch CRF

Figure B.7: Unsupervised CRF solutions for discrete (middle) and continuous (right) code
spaces. In the discrete case we mark the boundaries between classes, in the continuous case
we visualize the top 3 dimensions of the code space.

Fully connected Gaussian Conditional Random Fields (CRFs) [378] are an extremely
popular addition to semantic segmentation architectures. The CRF has the ability to improve
initial predictions of locations, and can “sharpen” predictions to make them consistent with
edges and areas with consistent color in the original image. CRF post-processing for refining
supervised and weakly supervised semantic segmentation predictions is ubiquitous in the
literature [91, 180, 378–380]. Recently, new connections between CRF message passing and
convolutional networks have allowed CRFs to be embedded into existing models [381, 382] and
trained jointly for better performance. By connecting the STEGO correspondence distillation
loss to the energy of an undirected model on image pixels we can use the same minibatch
MLE strategy to estimate other similar graphical models. For example, in the fully connected
Gaussian edge potential CRF, one forms a pairwise potential function potential function for
the pixels of a single image:

wcrf (vi, vj) = a exp

(
−|pi − pj|

2

2θ2α
− |Ii − Ij|

2

2θ2β

)
+ b exp

(
−|pi − pj|

2

2θ2γ

)
(B.8)

Where pi represent the pixel coordinates associated with node vi and Ii represents pixel
colors associated with node vi. The parameters a, b, θα, θβ, θγ are hyperparameters and control
the behavior of the model. These parameters balance the effect of long- and short-range color
similarities against smoothness. The CRF directly learns a pixel-wise array of probabilistic
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class assignments over k labels corresponding to the probability simplex code space C = P(l)
and a non-parametric clustering function f . For a compatibility function µ the CRF chooses
the Potts Model [128]: µpotts(ϕ(vi), ϕ(vj)) := P(ϕ(vi) ̸= ϕ(vj)).

With this setting of the weights and compatibility function, we directly recover the binary
potentials of the fully connected Gaussian edge potential CRF [118]. We can also add the
unary potentials which are often the outputs of another model. However, for our analysis
we explore the case without unary potentials which yields an “unsupervised” variant of
the CRF. However, without external unary potential terms, the strictly positive similarity
kernel encourages the maximum likelihood estimator (MLE) of the graph to be the constant
function. To rectify this, we can add small negative constant, −b, to the weight tensor
to push unrelated pixels apart. This negative force is the direct analogue of the negative
pressure hyper-parameter in STEGO and can be interpreted through the lens of negative
sampling [383]. This negative shift also appears in the word2vec and graph2vec embedding
techniques [384, 385]. Our shifted CRF potential encourages natural clusters to form that
respect the structure of the potentials that capture similarities in pixel colors and locations.
In the discrete case, solutions to this equation resemble superpixel algorithms such as SLIC
[386]. Additionally lifting this to the continuous code space and provide a natural continuous
generalization of superpixels and seems to avoid challenging local minima. We illustrate
these solutions to just the unsupervised CRF potential in Figure B.7. Finally, we note
that the second term of Equation B.8, referred to as the smoothness kernel, matches IIC’s
notion of local class consistency. However, we found that adding these CRF terms to the
self-correspondence loss of STEGO did not improve performance.
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B.10 Implementation Details

Model STEGO uses the “ViT-Base” architecture of DINO pre-trained on ImageNet. This
backbone was trained using self-supervision without access to ground-truth labels. We use
the “teacher” weights when creating our backbone. We take the final layer of spatially varying
features and apply a small amount (p = 0.1) of channel-wise dropout [212] before using them
throughout the architecture during training. Our segmentation head consists of a linear
network and a two-layer ReLU MLP added together and outputs a 70 dimensional vector.
We use the Adam optimizer [387] with a learning rate of 0.0005 and a batch size of 32. To
make our losses resolution independent we sample 121 random spatial locations in the source
and target implementations and use grid sampling [388] to sample features from the backbone
and segmentation heads. Our cluster probe is trained alongside the STEGO architecture
using a minibatch k-means loss where closeness is measured by cosine distance. Cluster and
linear probes are trained with separate Adam optimizers using a learning rate of .005

Datasets We use the training and validation sets of Cocostuff described first in [93] and
used throughout the literature including in [85]. We note that the validation set used in
[93] is a subset of the full CocoStuff validation set and we use this validation subset to be
consistent with prior benchmarks. We note that using the full validation set does not change
results significantly. When five-cropping images we use a target size of (.5h, .5w) for each
crop where h,w are the original image height and width. Training images are then scaled to
have minor axis equal to 224 and are then center cropped to (224, 224), validation images
are first scaled to 320 then are center cropped to (320, 320). All image resizing uses bilinear
interpolation and resizing of target tensors for evaluation uses nearest neighbor interpolation.

CRF We use PyDenseCRF [118] with 10 iterations with parameters a = 4, b = 3, θα =
67, θβ = 3, θγ = 1 as written in Section B.9.

Compute All experiments use PyTorch [131] v1.7 pre-trained models, on an Ubuntu 16.04
Azure NV24 Virtual Machine with Python 3.6. Experiments use PyTorch Lightning for
distributed and multi-gpu training when necessary [389].
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Table B.3: Hyperparameters used in STEGO

Parameter Cityscapes CocoStuff
λrand 0.91 0.15
λknn 0.58 1.00
λself 1.00 0.10
brand 0.31 1.00
bknn 0.18 0.20
bself 0.46 0.12

Hyperparameters We use the following hyperparameters for our results in Tables 4.1 and
4.3:

157



B.11 A Heuristic for Setting Hyper-parameters

Figure B.8: Distributions of feature correspondences between an image and itself across three
different hyper-parameter settings. The orange curve and distribution shows a proper balance
between attractive and repulsive forces allowing some pairs features to cluster together (the
peak at 1) and other pairs of features to orthogonalize (the peak at 0)

Setting hyperparameters without cross-validation on ground truth data can be difficult
and this is an outstanding challenges with the STEGO architecture that we hope can be
solved in future work. Nevertheless we have identified some key intuition to guide manual
hyperparameter tuning. More specifically, we find that the most important factor affecting
performance is the balance of positive and negative forces. Too much negative feedback and
vectors will all push apart and clusters will not form well, too much positive feedback and the
system will tend towards a small number of clusters. To debug this balance, we found it useful
to visualize the distribution of feature correspondence similarities as a function of training
step as shown in Figure B.8. A balanced system (Orange distribution) will tend towards
a bi-modal distribution with peaks at alignment 1 or orthogonality at 0. This bi-modal
structure is indicative that there is some clustering within images, but that not everything
is assigned to the same cluster. Pink and blue distributions show too much positive and
negative signal respectively. We find that given a reasonable balance of the λ’s, this balance
can be achieved by tuning the bs to achieve the desired balance.
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B.12 A note on 5-Crop Nearest Neighbors

Figure B.9: Number of patches from the same image found within each patch’s 7 nearest
neighbors

We found that pre-processing the dataset by 5-cropping images was a simple and effective
way to improve the spatial resolution of STEGO and the quality of K-Nearest Neighbors.
We consider each resulting 5-crop as a separate image when computing KNNs and patches
from the same image are valid KNNs. Figure B.9 shows the distribution of these self-matches
for the CocoStuff dataset. We note that the majority of patches do not have any nearest
neighbors from the same image.
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Appendix C

Appendix for Chapter 5

C.1 Website, Video, and Code

We provide additional details and a short video explaining FeatUp at aka.ms/featup. Addi-
tionally, we provide our code at: https://tinyurl.com/28h3yppa

C.2 Strided baseline implementation

For the DINO and ViT backbones, we extract patches with a stride of 16
upsample factor to produce

a higher density of feature vectors and thus increase feature resolution. We point out that the
upsampling factor is limited with this method (as the stride is lower bounded by 1), so this
approach can only upsample up to 16x for ViT-S/16. Practically however, these maximum
upsampling factors are impractical as they require far more memory than current GPUs
provide (see Figure C.10).
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C.3 Comparison to Image-Upsampling Methods

A variety of methods have been proposed for image super-resolution. Among the learning-
based approaches, deep image prior (DIP) [178] has been used succesfully for enhancing
images without additional training data. Figure C.1 shows that DIP poorly upsamples
features, introducing artifacts and “blob" patterns in the features and downstream outputs.
[176] introduced Zero-Shot Super-Resolution, a method that learns an image-specific CNN at
test time without additional training data. Additionally, images can be represented as Local
Implicit Image Functions (LIIF) [177] which can be queried at arbitrary resolution. While
similar to FeatUp’s implicit network, LIIF trained to continuously represent a feature map does
not produce sharp outputs like FeatUp (Figure C.1) Despite these methods’ successes in the
image super-resolution problem space, they are not equipped to upsample high-dimensional
features.

Figure C.1: Comparison of image super-resolution methods using Deep Image Prior, Zero-
Shot Super-Resolution (ZSSR), and Local Implicit Image Function (LIIF). We also include
a visualization on Implicit Feature Alignment (IFA). As shown in the whole feature map
and zoomed-in section, thse image upsampling methods do not effectively upsample the
low-resolution and high-dimensional feature maps by the large upsampling factors that we
are able to handle.
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C.4 Ablation Studies

We show the effects of each design decision for FeatUp in Figure C.2. Our upsampler blurs
ResNet features without the uncertainty loss, possibly because it cannot ignore certain
nonlinear artifacts or resolve the large pooling window present in ResNet-50. The magnitude
regularizer provides smoothing and regularization benefits. Our choice to include Fourier color
features dramatically improves resolution and high-frequency details. Finally, the attention
downsampler helps the system avoid odd edge and halo effects by learning kernels more
focused on salient parts of the signal. Using an explicit buffer of features instead of an implicit
network yields significant artifacts, though we note that the artifacts are significantly less
dramatic if the simple downsampler is also used.

We also provide an ablation study of the total variation and magnitude regularizers
in Figure C.4. Our regularizer is fairly robust to different settings as shown by the 2x
multiplication for both terms in the 3rd column. However, there still exists an optimal λ
range that provide important smoothing properties; larger values can interfere with the main
reconstruction objective as shown in the final column.

Figure C.2: Qualitative ablation study across both DINO and Resnet50 Backbones. The
biggest improvements arise from the implicit featurizer, color features, and the magnitude
TV regularizer.
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Figure C.3: Ablation of FeatUp’s training hyper-parameters. We are robust to a range of
jitter values, though features degrade with large changes in max pad.
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Figure C.4: Qualitative ablation study of the TV and magnitude regularizers. FeatUp is
fairly robust to the settng of these parameters.

To further justify our design decisions in the context of an end-to-end trained architecture,
we evaluate JBU with the Segformer [218] decoder by 1) removing the MLP (denoted as
MLP in Equation 5.6) on the guidance signal, 2) removing the temperature-weighted softmax
and replacing it with Euclidean distance between the central feature and its neighborhood,
and 3) removing the softmax and replacing it with cosine distance. Each ablation degrades
segmentation performance, with the MLP exclusion being the most detrimental.
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FeatUp (JBU)

Original - MLP
- Softmax

+ Euclidean Dist.
- Softmax

+ Cosine Dist.

mIoU 44.2 42.9 43.8 43.7
mAcc 55.8 54.7 54.5 55.3
aAcc 80.7 79.4 80.0 80.4

Table C.1: Semantic segmentation performance with the Segformer architecture trained on the
ADE20k train set and evaluated on the val set. Ablated FeatUp (JBU) replaces the original feature
upsampling in the Segformer decoder.
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CAM Score Semantic Seg. Depth Estimation

Ablation A.D. ↓ A.I. ↑ Acc. ↑ mIoU ↑ RMSE ↓ δ >1.25 ↑

Original 9.83 5.24 68.77 43.41 1.09 0.938

- MLP 10.04 5.10 68.12 42.99 1.14 0.917

- Softmax

+ Euclidean
9.98 5.19 68.68 43.16 1.10 0.928

- Softmax

+ Cosine
9.97 5.21 68.49 43.15 1.12 0.924

Table C.2: FeatUp (JBU) performance with ablated architectural components: removing the MLP,
replacing softmax with a gaussian kernel w.r.t. Euclidean or cosine distance. Across all metrics, each
ablation degrades performance.
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CAM Score Semantic Seg. Depth Estimation
Attn DS. O.D. TV Reg. A.D. ↓ A.I. ↑ Acc. ↑ mIoU ↑ RMSE ↓ δ >1.25 ↑

✓ ✓ ✓ 8.84 5.60 71.58 47.37 1.04 0.927
✗ ✓ ✓ 9.07 5.06 70.95 46.79 1.11 0.916
✓ ✗ ✓ 8.91 5.55 71.26 46.89 1.08 0.920
✓ ✓ ✗ 9.10 5.00 68.06 44.36 1.11 0.913

Table C.3: Ablation study for implicit FeatUp features with varied downsampler (attention = ✓,
simple = ✗), outlier detection, λTV (0.05 = ✓, 0.0 = ✗).
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C.5 Visualizing Additional PCA Components

Figure C.5: Visualizing higher PCA components with FeatUp. FeatUp upsamples entire
feature maps, so their higher-order principal components also remain in the same space as
the original features and are upsampled precisely. Higher components tend to separate more
fine-grained object categories like the skater from the skateboard, and the trees from the
background, and the clouds from the sky. Note that each subobject’s features are upsampled
precisely to the object it represents.

C.6 Saliency Map Details

Downsampling in FeatUp is analogous to ray-marching in NeRF, which approximates the
physics of image formation. FeatUp’s downsampler approximates a network’s process of
pooling information into features. As shown in Figure 6, most networks preserve the rough
location of objects in their features (the objects just appear downsampled and blurred). This
observation leads us to use blur/pooling operators.
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The simplest of these is average pooling, but we can do better by generalizing this
operation to a learned blur/pooling kernel so the downsampler can better match a network’s
receptive field size. To map back to NeRF, this is like adding learned camera lens distortion
parameters to the ray-marcher so NeRF can better fit the data.

As shown in Figure 5.6 and described in Section 3.1, even a learned blur/pooling kernel
cannot capture dynamic receptive fields or object salience. For example if a small amount
of an important object is in a transformer’s patch, the whole feature changes. We capture
effects like this by making the learned pool/blur kernel dependent on image content using a
1x1 conv (we don’t need anything bigger than this layer). This generalizes the previously-
described learned blur/pool and allows the downsampler to adaptively pool based on image
content. Figure C.6 shows that the salience network focuses on certain attributes (e.g.
object boundaries, some important small objects). We also note that many common pooling
strategies such as average pooling or nearest/bilinear/bicubic resizing are special cases of our
learnable attention pooling strategy.
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C.7 Visualizing Downsampler Salience and Kernels

Figure C.6: Visualization of downsampler salience and weight and bias kernels for two images.
Note how fine-grained objects have higher salience and regions around important objects
(like the sky between the hands and the skateboard) have lower salience. This allows the
network to capture nonlinear behavior where embeddings from salient regions dominate the
embeddings of other regions.
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C.8 Visualizing Predicted Uncertainty

Figure C.7: An example predicted uncertainty map for a set of ViT features. White areas
have higher uncertainty. In this figure, we can see that nonlinear artifacts like the spurious
pink tokens are marked with high uncertainty as they change location depending on the given
evaluation. These tokens might serve some other role in the network, such as class-token-like
information aggregation. We do not see these types of effects in DINO or convolutional
networks.
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C.9 Improving Image Retrieval for Small Objects

Figure C.8: High-resolution FeatUp features can be used to improve the retrieval of small
objects and cluttered scenes. A query image (Left) is featurized with DINO and the region
marked with a red × is used as a query point. We show the detailed placement of this query
point in the second image from the left. In the two images on the right, we show the closest
matching point in the target image (red ×) and we also visualize the similarity heatmap
(red means similarity, blue means dissimilarity). The second image from the right depicts
the matching point and heatmap when using bilinear feature interpolation on the image
and target. The image on the far right shows the results after upsampling with FeatUp
prior to computing the retrieval. Because the scene is cluttered, bilinear interpolation blurs
object features together and the resulting query vector attends over both the ground and the
traffic cones. FeatUp’s features better align with objects allowing only the traffic cones to be
retrieved.
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C.10 Linear Probe details

In both linear probe tasks, one probe was trained on low-resolution (14x14) features from
the COCO training set, and frozen for validation across all methods. FeatUp’s performance
improvements on this repurposed linear probe show that our methods increase resolution
without compromising the original feature space. We highlight that these results are not
meant to improve state-of-the-art performance on segmentation and depth estimation; they
are meant to showcase feature quality across upsamplers. Because prediction for both tasks
is done with a frozen backbone and a single trainable linear probe, the segmentation and
depth maps are not meant as a direct application.

C.11 Average Drop and Average Increase Details

Average Drop is expressed as
N∑
i=1

max(0,Y c
i −Oc

i )

Y c
i

· 100, where Y i
c is the classifier’s softmax output

(i.e. confidence) on sample i for class c, and Oc
i is the classifier’s softmax output on the

CAM-masked sample i for class c. We generate Oc
i by keeping the top 50% of CAM values

(and Gaussian blurring the remaining 50% of values with less explainability power). Though
we generally expect classifiers to drop in confidence because even masking out less-salient
pixels can remove important image context, a high-quality CAM will target the explainable
regions of an image more precisely and thus maintain a higher confidence. In the reverse
direction, we measure the Average Increase to capture the instances where CAM-masked

inputs increase model confidence. Specifically, we define Average Increase as
N∑
i=1

1Y c
i
<Oc

i

N
· 100

where 1Y c
i <Oc

i
is an indicator function equal to 1 when Y c

i < Oc
i - that is, when model

confidence increases upon classifying a CAM-masked image.
Similar to the RelevanceCAM evaluation in [154], we randomly select 2000 images from

the ImageNet validation set (limited to images where the label and model prediction match)
to measure A.D. and A.I. on.
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C.12 Performance Benchmarking

See Table C.4 for performance benchmarking of our adaptive convolution CUDA kernel used
in FeatUp (JBU).

Shape (B, H, W, C, F) Method Forward (ms) Backward (ms) Peak Mem (Mb)

1× 14× 14× 2048× 5
Ours 0.15 1.05 6.24

TorchScript 2455 69367 12.8
Unfold 3.30 2.81 119.

1× 512× 512× 3× 5
Ours 0.55 2.10 10.2

TorchScript 147. 520. 24.3
Unfold 3.47 4.85 231.

16× 32× 32× 2048× 5
Ours 8.43 90.8 372.

Unfold 118. 218. 6628.

32× 512× 512× 3× 5
Ours 17.7 114. 326.

Unfold 36.0 104. 4901.

64× 14× 14× 2048× 5
Ours 6.12 61.1 400.

Unfold 57.5 170. 5174.

64× 224× 224× 3× 5
Ours 6.27 36.1 128.

Unfold 16.7 27.4 1878.

64× 64× 64× 16× 5
Ours 1.06 8.99 44.5

Unfold 7.18 14.5 822.

64× 64× 64× 16× 7
Ours 2.00 8.36 52.6

Unfold 10.8 25.6 1596.

Table C.4: Comparing the performance of our CUDA JBU kernel with with implementations
based on PyTorch’s Unfold operation and TorchScript. Our implementation dramatically
reduces memory overhead and increases inference speed. Code for this operation is available
in the provided link.
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Figure C.9: We evaluate how floating point operations scale with various factors. In varying
the upsampling factor, feature dimension, and target spatial dimension, FeatUp (JBU)
remains competitive in GFLOP usage. For each experiment, the attributes not studied are
kept constant (upsampling factor = 2, feature dimension = 256, starting spatial dimension =
8x8).

We analyze peak memory usage and inference time for various upsampling methods.
Specifically, we upsample ViT features from a (1× 3× 224× 224) image (i.e. low-resolution
feature dimensions of (1× 384× 14× 14)) by factors of 2, 4, 8, and 16. Figure C.10 shows
that FeatUp (JBU)’s peak memory closely follows resize-conv and SAPA baselines and
outperforms CARAFE. Additionally, FeatUp is as fast as baselines yet outperforms baselines
in all our quantitative evaluations. We note that strided and large image baselines become
computationally infeasible after 8× upsampling, even using a batch size of 1.

Figure C.10: Analysis of peak memory usage (left) and inference time (right) for various
forward-pass upsamplers. FeatUp (JBU) is competitive with SAPA and resize-conv across
upsampling factors and is more efficient than CARAFE for smaller factors. The large image
and strided approaches become infeasible at large upsampling factors we only show metrics
for these methods up to 8× upsampling.
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C.13 Additional Qualitative Results

We provide additional CAM visualizations with supervised ViT features on the ImageNet val
set in Figure C.11. As in the main chapter, we upsample features from 14x14 to 224x224
output before extracting CAMs (except for the “Low-Res" column, where the features are
kept as-is). Both FeatUp (JBU)’s edge-preserving bilateral filters and the FeatUp (Implicit)’s
feature representation allow resulting CAMs to highlight salient regions more accurately. Our
CAMs combine the semantic advantages of low-resolution features and the spatial advantages
of large images, producing refined versions of the original CAMs without discontinuous
patches present in the other upsampling schemes.

Figure C.11: CAMs on the ImageNet validation set from a supervised ViT backbone and linear
probe classifier. Both FeatUp variants produce features that are more precise with respect to the
input image, allowing downstream CAMs to better align with object boundaries.

See Figure C.12 for examples of linear probe transfer learning for semantic segmentation
on the COCO-Stuff dataset. The 14x14 features output from a ViT backbone are upsampled
with the following methods to achieve 224x224 resolution. Then, a linear probe is trained on
the low-resolution features and frozen for evaluation on COCO-Stuff semantic class labels.
Our methods recover more cohesive labels of objects and backgrounds.
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Figure C.12: Examples of linear probe transfer learning for semantic segmentation on the COCO-
Stuff dataset. Our methods more closely resemble ground-truth segmentation and smooth many of
the artifacts present in the low-resolution features. Additionally, FeatUp (Implicit) recovers thin
structures like the umbrella pole not even present in the ground truth despite being semantically
correct.

Figure C.13 provides additional examples of linear probe transfer learning for depth
estimation. The 14x14 features output from a ViT backbone are upsampled to achieve
224x224 resolution. Then, a linear probe is trained directly on the features to predict depth
while supervised with a small MiDaS network. Our results show that both FeatUp variants
result in high-quality features capable of transfer learning.

Figure C.13: Examples of linear probe transfer learning for depth estimation. Our methods produce
sharper object boundaries and smoother interiors that more closely align with true depth than other
methods.
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Figure C.14: End-to-end training performance of different upsampling methods from our
Segformer based semantic segmentation experiments. These results do not use linear probes,
but instead train the architecture jointly.

C.14 Limitations

Figure C.15: Left: Though FeatUp’s implicit network can capture fine detail such as
the soccer ball or window frame, it can still produce some halo effects (see soccer player).
Additionally, because the method relies on the input image’s spatial signal, certain patterns
unrelated to object semantics can be transferred to the feature map (see rug pattern), though
this is a rare occurrence. Right: FeatUp’s JBU network is not as sensitive to fine detail as
the implicit network, instead capturing broader contours.
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C.15 Implementation Details

All backbones (DINO, DINOv2, ViT, ResNet-50, CLIP, and DeepLabV3) used to train FeatUp
are frozen, pre-trained models obtained from the community. We outline the hyperparameters
used to train FeatUp in table C.5.

Hyperparameter FeatUp (Implicit) FeatUp (JBU)

Num Images 1 4
Num Jitters Per Image 10 2

Downsampler Attention Attention
Optimizer NAdam NAdam

Learning Rate 0.001 0.001
Image Load Size 224 224
Projection Dim 128 30
Training Steps 2000 2000

Max Transform Padding 30px 30px
Max Transform Zoom 1.8× 2×

Kernel Size 29 16
Total Variation Weight 0.05 0.0

Implicit Net Layers 3 n/a
Implicit Net Dropout 0.1 n/a

Implicit Net Activation ReLU n/a

Table C.5: Hyperparameters used in training FeatUp.
.
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Appendix D

Appendix for Chapter 6

D.1 Full Cross Modal Retrieval Results

Places Audio Retrieval AudioSet Retrieval
I → A A → I I → A A → I

Method @1 @5 @10 @1 @5 @10 @1 @5 @10 @1 @5 @10

[274] 12.1% 33.5% 46.3% 14.8% 40.3% 54.8% - - - - - -
[254] 13.0% 37.8% 54.2% 16.1% 40.4% 56.4% - - - - - -

DAVENet [231] 12.7% 37.5% 52.8% 20.0% 46.9% 60.4% - - - - - -
DAVENet* [231] 13.3% 38.3% 51.2% 20.5% 45.3% 57.2% 0.10% 0.70% 1.30% 0.10% 0.30% 1.20%
CAVMAE*[229] 36.7% 70.3% 81.7% 33.9% 65.7% 77.7% 22.8% 44.9% 55.7% 21.1% 41.7% 50.7%
ImageBind[247] 0.10% 0.50% 1.10% 0.10% 0.40% 1.10% 29.6% 55.4% 64.5% 31.8% 57.3% 66.5%

Ours 65.3% 90.0% 94.2% 64.4% 89.4% 94.3% 35.1% 58.0% 68.2% 33.6% 59.3% 68.4%

Table D.1: Full cross modal retrieval results using the same setting of Table 6.2. We note
DenseAV outperforms all baselines in all metrics and all datasets.
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D.2 VGGSound Source Evaluation

Table D.2 adds evaluations on the VGGSound Source dataset. We note that VGGSS
annotation’s large bounding boxes do not reward high-resolution results. Nevertheless,
DenseAV outperforms all methods including 5 additional baselines (Attention10K [390],
AVObject [391], LVS [242], FNAC AVL [392], and SLAVC [393]).

Method cIoU AUC

DAVENet 6.8% 21.2%
CAVMAE 7.9% 25.0%
ImageBind 3.4% 20.5%

Attention10K 18.5% 30.2%
AVObject 29.7% 35.7%

LVS 34.4% 38.2%
SLAVC 38.8% 38.8%

FNAC AVL 39.4% 39.4%
Ours 40.6% 40.6%

Table D.2: Performance on VGGSound Source localization.
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D.3 Speech Prompted Semantic Segmentation Noise Ro-
bustness:

DenseAV was trained with natural speech and sounds and is robust to environmental noise
and common speech errors like stutters. We explore additional noise-robustness experiments
in Table D.3.

Method mAP mIoU

DAVENet 31.8% 26.1%
CAVMAE 27.2% 23.8%
ImageBind 20.2% 19.7%

Ours 48.1% 36.6%

Table D.3: Performance on speech based semantic segmentation task with environmental
noise from the MUSAN [394] dataset added to spoken category labels.
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D.4 Speech Prompted Semantic Segmentation Examples

Figure D.1: Selected visualizations of AV heatmaps for the speech prompted semantic seg-
mentation task. We visualize results across several baselines. DenseAV achieves the best
localization performance both qualitatively and quantitatively, highlighting the full extent of
objects with high resolution heatmaps.
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D.5 Sound Prompted Semantic Segmentation Examples

Figure D.2: Selected visualizations of AV heatmaps for the sound prompted semantic seg-
mentation task. We visualize results across several baselines. DenseAV achieves the best
localization performance both qualitatively and quantitatively, highlighting the full extent of
objects with high resolution heatmaps. We note that DenseAV can highlight objects even if
they are not centered or clearly visible as in the dog example (second column).
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D.6 Comparison Across Backbones

Figure D.3: Comparison of sound and speech prompted localization of DenseAV with various
choices of visual backbone. DINO’s features are both the best for localization as well as the
highest resolution because of its 8× 8 patch size.
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D.7 Associating Spoken Words to Visual Objects

Visual Object Top 5 Retrieved Words

ottoman sofa chair chair seat living
ruins brick stone castle clay stone

dirt track dirt dirt trail field dirt
monitor screen screen computer television screen

control panel cockpit airplane cockpit airplane airplane
bar desk picture counter poker kitchen

waterfall waterfall fountain water waterfall waterfall
embankment trench land field land hill

bleachers amphitheater steps colosseum step stairway
snow snow snow snow mountain snow

Table D.4: Top 5 word retrieval using DenseAV’s visual object features on the speech prompted
semantic segmentation dataset described in Section 6.6.2. We determine if DenseAV can
perform fine-grained speech retrieval by seeing if inner activations properly highlight the
definitions of objects. We average visual features of visual objects to form a visual object
query vector. We then form word representations for the PlacesAudio validation set by
averaging speech features over an utterance using word timing information provided by
Microsoft’s Speech to Text API. Feature averaging strategy is depicted in Figure D.4. For
each visual object, we retrieve the top 5 nouns from the PlacesAudio spoken captions. We do
not average across words, so if a word appears twice in the table it represents two different
spoken instances. Some visual objects are able to retrieve instances of speech that directly
correspond to the name of the object, such as snow and waterfall. Others retrieve a variety
of relevant words for example the “ruins” visual object retrieves instances of people saying
“brick”, “castle”, and “stone”. We note that the 10 visual objects selected were randomly
selected from the hundreds in our speech prompted semantic segmentation dataset.
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Figure D.4: Diagram of feature averaging strategy used for the retrieval experiment in
Table D.4. We average visual features over all instances of a visual object as shown in the
left hand side, using the segmentation mask to only include visual features for the object
of interest. To form features for each word in the places audio dataset, we use word timing
information to average deep features over the extent of an utterance. Once we form features
for all visual objects and all words, we retrieve the top 5 nouns for each visual object.
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D.8 Failure Cases

Figure D.5: Examples of DenseAV’s failure cases on speech and sound prompted semantic
segmentation. On unusual visual objects such as the “hair dryer drying” activations are more
diffuse than other hair dryers in the dataset, likely because of its rarer form. A similar effect
appears in the steering wheel example likely because steering wheel is often infrequently used
to describe airplane controls. Rare sounds like volcano explosions, or rare visual obnjects like
the bowling “tunnels” cause similar diffuse activations. Like many discriminitive algorithms,
DenseAV has some tendency to bias towards discriminitive regions such as the top of the table
tennis board in the “playing table tennis”. There is also some mismatch between ADE20K
labels and what you might expect a reasonable algorithm should highlight, as evidenced
by the “roller coaster running” sound example. Similarly in the “Figurine” example, the
algorithm reasonably associates figurines with the lions in the background instead of the
dog in the foreground. Finally the beer machine example shows how there’s some ambiguity
between whether an algorithm should respond to compound words and ideas. Should it
couple “beer” to the beer glass and “machine” to the spigots, or should “beer-machine” entirely
couple to the spigots. DenseAV seems to choose the former as the beer in the foreground and
background is also activated in this speech prompted example. )
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D.9 Comparing to DINO CLS Token Activations

Figure D.6: Comparison of DINO CLS token heatmap visualization [226] and DenseAV’s
activations. DenseAV does not just select salient objects as DINO’s CLS token does. Instead,
within a single video clip DenseAV can highlight the meaning of words as they are spoken.
Depending on the word spoken, this can accurately highlight a variety of objects in the scene,
even if they are less salient like the trees in the background.
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D.10 Visualizing Activations when an Object is not Present

Figure D.7: Visualization of DenseAV activations when an object is not present in a scene.
DenseAV’s activations are significantly smaller than when objects are present in a scene like
in Figure D.6.
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D.11 Additional Regularizer Details

Negative Audio Splicing Though using 6.3 is enough to make a reasonable cross-modal
retrieval system, the extreme flexibility of self-attention operator in modern transformers can
lead to degenerate solutions. For example, we found that without regularizers that encourage
local features to be meaningful, the network could develop its own “global” tokens by selecting
a handful of local tokens to carry all of the information. This is similar to the observation of
[268] and we observed this occasionally in our audio branch, which would collapse to only
use the first tokens. To keep the network from collapsing the semantics of the audio clip into
a single token, we introduce small negative sample clips into our audio samples. These small
negative audio regions are randomly spliced into the larger audio clip, and we encourage the
network to set the couplings in these regions to zero with a l2 regularizer. We include further
details of the DenseAV’s architecture, hyperparameters, and regularizers in the Supplement.

More formally, let (ab, vb)B1 be a Batch of B paired audio and visual signals as before. Let
mb ∈ [0, 1]T be a soft mask where that measures whether a given location in the audio signal
is actually part of a spliced negative clip. For example, mb[t] = 1 when the clip at time t
is part of the negative clip, mb[t] = 0 in the positive part of the clip, and 0 < mb[t] < 1 in
the small boundary regions when the true clip is being spliced into the negative clip and
both sounds are present. Our negative audio splicing regularizer squares each entry of the
similarity tensor and averages these according to the strength of the negative clip indicator
mb:

LSplice = WeightedMean(s(ab, vb)2,mb) (D.1)

Where the mean assumes that the weighting strength mb has been broadcast to the shape
of s(ab, vb)2. We point interested readers to the supplement for explicit formulations of these
regularizers which are too verbose for the double-column format here. Intuitively, this term
penalizes the network for having activations during a period of spliced negative audio. We
also note that we apply this regularizer to any padded silence at the ends of short audio clips.

Calibration Regularization The calibration temperature provides the network with the
crucial ability to increase or decrease its certainty by updating a single parameter. However,
the network can also achieve this effect by increasing or decreasing the magnitudes of its
features. We found that sometimes the temperature would accelerate downward, forcing the
feature magnitudes to increase to compensate. As a result, the network would eventually
saturate or become unstable. We hypothesize that this is due to optimizer momentum, and
we prevent this “runaway calibration”, by adding a small regularizer to the temperature
parameter γ

LCal = max(log(1)− log(γ), 0)2 (D.2)

This term penalizes the calibrator when it drops below 1.0 and encourages the calibrator
to stay at or above 1.0.

Nonnegative Pressure The InfoNCE loss function is invariant to the addition of a scalar
to every inner product. Thus, to the network can choose to either find evidence of “positive”
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couplings connecting similar objects or “negative” couplings connecting regions that definitely
do not belong together. We found that by encouraging the network to look for “positive”
evidence, as opposed counterfactual evidence, improved training stability and performance
across the key metrics we investigate. To encourage this behavior, we add a small regularizer
to encourage inner products between features to be ≥ 0. More specifically, let Ω be a set
of 250 randomly selected coordinates (b, b′, k, f, t, h, w). We then form our non-negativity
regularizer:

LNonNeg =
1

|Ω|
∑
Ω

min (s(ab, vb′)[k, f, t, h, w], 0)
2 (D.3)

This regularizer penalizes the similarity tensor if it drops below zero, encouraging features
to exhibit positive couplings. We note than other works [253], have noted the benefits of
using only non-negative feature couplings.

Disentangement Regularization DenseAV’s multi-head similarity aggregation allows
the network to use its different heads to model different independent ways that the audio and
video modalities could couple together. Interestingly we find that if we give DenseAV two
heads, one naturally specializes to language and the other head to more generic sounds. In
particular, we find that one head will rediscover the meaning of words by “grounding” them
to visual objects and another head will localize which objects created a given sound. To
purify this disentanglement of concepts without supervision, we encourage different attention
heads of our algorithm to specialize. More specifically we penalize the network when multiple
attention heads are simultaneously active. In our experiments we use two attention heads. As
before, we let (ab, vb)B1 be a Batch of B paired audio and visual signals. Our disentanglement
loss for two heads is then:

LDis = Mean(|s(ab, vb)[1] ◦ s(ab, vb)[2]|) (D.4)

Where ◦ represents elementwise multiplication and | · | is the elementwise absolute value
function. [k] mirrors PyTorch slicing notation and refers to selecting the activations for only
the kth attention head. Intuitively, this loss will encourage one head to be silent if the other
head is active and can be viewed as a “cross-term” generalization of the l2 regularizer [272]
for encouraging activation shrinkage.

Total Variation Smoothness To improve the quality and temporal consistency of dis-
covered audio-visual couplings we impose a smoothness regularizer, LTV , in the audio-time
dimension.

LTV = Mean((act(1 : t− 1)− act(2 : t))2) (D.5)

Where the activations for a given time slice [1, t− 1] are given by:

act(1 : t− 1) = (s(ab, vb)[:, :, t
′, :, :])t−1

t′=1 (D.6)

Informally, this regularizer penalizes when the inner product strengths change quickly
over time.
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Full Stability Regularizer Putting these terms together into a single equation we have:

LStability = λSpliceLSplice + λCalLCal + λNonNegLNonNeg + λTVLTV (D.7)

Where λSplice = 0.01, λCal = 0.1, λNonNeg = 0.01, and λTV = 0.01.
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D.12 Regularizer Ablation

Regularizer Speech Semseg. Places Acc. @ 10
LCal LNonNeg LSplice LTV mAP mIoU I → A A→ I
✓ ✓ ✓ ✓ 48.7% 36.8% 94.2% 94.3%

✓ ✓ ✓ 49.1% 37.3% 94.3% 94.1%
✓ ✓ ✓ 48.2% 36.8% 94.1% 93.4%
✓ ✓ ✓ 48.6% 36.7% 94.8% 94.5%
✓ ✓ ✓ 49.0% 36.9% 94.2% 93.7%

- - - -

Table D.5: Ablation study of the different components of LStability. We find that on the whole
LStability is needed to avoid collapse as shown the the bottom row of the table. However,
removing any individual term does not have much effect on the final metrics.
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Appendix E

Appendix for Chapter 7

E.1 Video and Code

We include a short video description of our work at https://aka.ms/axiomatic-video.
We also provide training and evaluation code at https://aka.ms/axiomatic-code

E.2 Evaluation and Implementation Details

Figure E.1: First-order interpretation evaluation strategy. A good method should highlight
pixels in the query image (top left and middle) that, when censored (top right), have the
largest possible impact on the cosine distance.

Models: Our evaluation experiments use visual similarity systems built from “backbone”
networks that featurize images and compare their similarity using cosine distance. We consider
supervised backbones and contrastive unsupervised backbones. In particular, ResNet50 [121],
VGG11 [334], and DenseNet121 [333] are trained with human classification annotations from
the ImageNet dataset [134] and MoCo V2 is trained using unsupervised contrastive learning
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on ImageNet. We use torchvision [395] based model implementations and pre-trained weights
except for MocoV2 which we download from [396] (800 epoch model). For kernel convergence
experiments in Figure 7.5 we use randomly initialized three layer deep networks with Glorot
[211] initialization, rectified linear unit activations, and a 20 dimensional hidden layer. We
note that the functional form is not of much importance for these experiments so long as the
function is nonlinear and non-quadratic. We provide an additional example in Figure E.4 on
random 15 dimensional Boolean functions formed by enumerating and summing all possible
variable products and weighting each by a uniform coefficient between 0 and 10.

Data: For evaluations within Table 7.1 we use the Pascal VOC [331] dataset. In particular
we form a paired image dataset by using MoCo V2 to featurize the training and validation
sets. All experiments use images that have been bi-linearly resized to 224× 224 pixels. For
each image in the PascalVOC validation set we choose a random segmentation class that
contains over 5% of image pixels. We then find each validation image’s closest “Conditional
Nearest Neighbor” [332] from the images of the training set of the chosen segmentation class.
We use cosine similarity between MoCoV2 deep features to find nearest neighbors. With
this dataset of pairs, we can then compute our first and second order evaluation metrics.
We provide instructions for downloading the pairs of images in the attached code. We note
that our approach for selecting pairs of images with matching segmentation labels allow for
measuring Faithfulness and success in label propagation as measured by mIoU.

Metrics: Our attached code contains implementations all metrics for preciseness but we
include descriptions of metrics here for clarity. To measure first order faithfulness, we take a
given validation image and training image from our dataset of paired images and compute
the first order heat-map over the validation image. We then blur the top 30% of pixels by
blurring the image with a 25 × 25 pixel blur kernel and replacing the top 30% of original
image pixels with those from the blurred image. The drop in cosine similarity between the
unblurred images and the unblurred training and blurred validation image is the first order
faithfulness. We illustrate our first-order evaluation strategy in Figure E.1.

For our second-order evaluation, we use the ground truth semantic segmentation mask of
the training image as a “query” attention signal. We then use the second-order interpretation
methods to “project” this attention to the “retrieved” validation image. We censor all but
the most-attended pixels in the retrieved image. The size of the remaining pixels matches
the size of the validation image’s selected semantic segmentation mask. In the second-order
case we additionally measure the mean intersection over union (mIoU) of the resulting mask
compared to the ground-truth retrieved image segmentation. A good approach should attend
to jut the pixels of the segmentation class and thus yield a mIoU of 1 (maximum value) as a
binary segmentation problem. We illustrate our second-order evaluation strategy in Figure
7.6.

Finally, for those methods that permit it, we measure how much they violate the efficiency
axiom by summing the interpretation coefficients and comparing with v(N)− v(∅). In the
first order setting v(N) is the similarity between query and retrieved image, and v(∅) is
the similarity between query and a blurred retrieved image (with 25 pixel blur). In the
second order setting v(∅) represents the similarity when both images are blurred. For SAM-

198



based methods we replace features with those from blurred images. To compute the sum of
interpretation coefficients for kernel methods we sum over Shapley values in the first order
case and over Shapley-Taylor indices of order k ≤ 2 in the second-order case. For Partition
SHAP [325] we sum coefficients over all pixels. For Integrated Hessian’s we sum over all first
and second order coefficients as described in [324].

In tables we report mean values of Inefficiency, and Faithfulness metrics and note that for
these experiemtns the Standard Error of the Mean (SEM) is far below the three significant
figure precision of the table.

First Order Methods: For first order explanations we use the official implementation of
ImageLIME [397] and use the SHAP package for Integrated Gradients, Partition SHAP, and
Kernel SHAP [325]. We re-implement SBSM and VESM in PyTorch from the instructions
provided in their papers. For sampling procedures such as LIME, Kernel SHAP, and Partition
SHAP we use 5000 function evaluations. For first and second-order super-pixel based methods
(LIME, Kernel-SHAP) we use the SLIC superpixel method [398] provided in the Scipy library
[399] with 50 segments, compactness = 10, and σ = 3. For SBSM we use a window size of
20 pixels and a stride of 3 pixels. We batch function evaluations with minibatch size 64 for
backbone networks and 64× 20 for SAM based methods. For all background distributions we
blur the images with a 25-pixel blur kernel with the exception of LIME and SBSM which use
mean color backgrounds.

Second Order Methods: For second order methods we use the same background and
superpixel algorithms, but implement all methods within PyTorch for uniform comparison.
For SBSM, Kernel SHAP, and LIME we use 20000 samples and for KSAM and IGSAM we
use 40000 samples. For IGSAM we use the expected Hessians method referenced in the
supplement of [324]. We use the PyTorch “lstsq”function for solving linear systems. For more
details on our generalization of SBSM see Section E.11.

Compute and Environment: Experiments use PyTorch [131] v1.7 pre-trained models, on
an Ubuntu 16.04 Azure NV24 Virtual Machine with Python 3.6. For all methods that require
many network evaluations we use PyTorch DataLoaders with 18 background processes to
eliminate IO bottlenecks. We standardize experiments using Azure Machine Learning and
run each experiment on a separate virtual machine to avoid slowdowns due to scarce CPU or
GPU resources.

E.3 Proof of Proposition 7.6.2

Let v(S) : [0, 1]N → R := f(mask(x, S)) represent soft masking of the spatial locations of a
deep feature map x with the vector of zeros and applying a differentiable function f . We
begin with the formulation of Integrated Gradients:

IGhw(S) = (Shw − S ′
hw)

∫ 1

α=0

∂v(αS + (1− α)S ′)

∂Thw
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In our case the foreground, S := 1HW , is a mask of all 1s and the background, S ′, is the zero
mask of the same shape. We note that the ∂

∂Thw
refers to taking the partial of the full input

αS, not just the mask S. We include this to stress the subtle difference which can be missed
in a quick reading of the equations of [335]. In this case our formula is simplified to:

IGhw(S) =

∫ 1

α=0

∂v(αS)

∂Thw

Approximating this integral with a single sample at α = 1 yields:

IGhw(S) ≈
∂v(S)

∂Shw

=
∂f(mask(x, S))

∂Thw

=
∂

∂Thw
f(x⊙ S)

=
∑
c

xchw
∂f(x)

∂xchw

=
∑
c

xchwGAP (∇xf(x)) (Spatially Invariant Derivatives)

Which is precisely the formulation of GradCAM. This also makes it clear that the global
average pooling of GradCAM causes the method to deviate from integrated gradients in the
general case. To construct a function where GradCAM violates the dummy axiom we simply
have to violate the spatial invariance of gradients. We provide a specific example of this
violation in E.4.

E.4 GradCAM Violates the Dummy Axiom

It is straightforward to construct examples where GradCAM violates the dummy axiom. For
example, consider the function:

d(x, y) = simcosine(GAP (x), GAP (y ⊙M))

Where simcosine represents cosine similarity, ⊙ represents elementwise multiplcation, and
M ∈ [0, 1]CHW is a mask where Mchw = 0 if w ≤ W

2
and Mchw = 1 otherwise. Intuitively, M

removes the influence of any feature on the left of the image making these features “dummy”
features for the model. Because GradCAM spatially averages the gradients prior to taking
the inner product with the feature map all features are treated equally regardless of how
they are used. In this example, depicted in Figure E.2, positive contributions from the right
side of the image are extended to the left side of the image despite the fact that the mask,
M stops these features from impacting the prediction. Using a Shapley or Aumann-Shapley
approximator on the feature space does not suffer from this effect as shown in the two right
columns of Figure E.2.
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Figure E.2: Interpretations of a function that purposely ignores the left half of the image.
KSAM and IGSAM properly assign zero weight to these features. GradCAM does not and
hence violates the dummy axiom of fair credit assignment.

E.5 Integrated Gradient CAM

Sections E.4 and E.3 demonstrate that GradCAM can violate the dummy axiom when the
function has spatially varying gradients which is a common occurrence especially if one
is trying to interpret deeper layers of a network. We remedy this by instead considering
Integrated Gradients on a function which masks the spatial locations of a deep feature map.
More specifically our Integrated Gradient generalization of CAM takes the following form:

IGCAM(h,w) :=

∫ 1

α=0

∂f(b+ αM ⊙ (x− b))
∂Thw

(E.1)

Where f is the classification “head”, x ∈ RCHW is a tensor of deep image features, M := 1HW

is a mask of 1s over the spatial location of the features, b ∈ RCHW is a background signal
commonly taken to be zero in GradCAM. We note that the ∂

∂Thw
refers to taking the partial

of the full input b+ αM ⊙ (x− b), not just the mask. We include this to stress the subtle
difference which can be missed in a quick reading of the equations of [335]. This variant of
GradCAM does not violate the dummy axiom and satisfies the axioms of the Aumann-Shapley
fair credit assignment.
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E.6 Additional Similarity Visualizations

Figure E.3: Additional first-order search interpretations on random image pairs from the
Pascal VOC dataset
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E.7 Additional Results for Stanford Online Products

Table E.1: Comparison of performance of first-order search interpretation methods across
different visual search systems on the Stanford Online Product dataset. Methods introduced
in this work are highlighted in pink. *Though SAM generalizes [287] we refer to it as a
baseline. For additional details see Section 7.8

SB
SM

PS
H
AP

LI
M

E
K
SH

AP

VES
M

GCAM
SA

M
*

IG
SA

M

K
SA

M

Metric Model Model Agnostic Architecture Dependent
DN121 0.18 0.23 0.20 0.22 0.09 0.13 0.12 0.18 0.18

MoCoV2 0.24 0.30 0.27 0.18 0.14 0.2 0.21 0.24 0.24
RN50 0.11 0.14 0.12 0.13 0.03 0.07 0.07 0.10 0.10Fa

it
h.

VGG11 0.15 0.16 0.14 0.15 0.04 0.08 0.09 0.12 0.12
DN121 - 0.00 0.24 0.00 - 11.2 0.54 0.02 0.00

MoCoV2 - 0.00 0.17 0.00 - 0.34 0.57 0.02 0.00
RN50 - 0.00 0.21 0.00 - 13.6 0.39 0.02 0.00In

eff
.

VGG11 - 0.00 0.24 0.00 - 4.13 0.47 0.04 0.00
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E.8 Additional Results for Caltech-UCSD Birds 200 (CUB)
Dataset

Table E.2: Comparison of performance of first-order search interpretation methods across
different visual search systems on the CUB dataset. Methods introduced in this work are
highlighted in pink. *Though SAM generalizes [287] we refer to it as a baseline. RN50-ML
refers to a ResNet50 architecture trained for metric learning on the CUB dataset with the
margin loss [400]. For additional details see Section 7.8

SB
SM

PS
H
AP

LI
M

E
K
SH

AP

VES
M

GCAM
SA

M
*

IG
SA

M

K
SA

M

Metric Model Model Agnostic Architecture Dependant
DN121 0.25 0.38 0.31 0.34 0.15 0.10 0.12 0.30 0.30

RN50-ML 0.39 0.49 0.47 0.49 0.04 0.14 0.17 0.41 0.41
MoCoV2 0.32 0.47 0.39 0.41 0.26 0.26 0.26 0.34 0.34

RN50 0.14 0.21 0.18 0.18 0.05 0.07 0.07 0.14 0.14Fa
it

h.

VGG11 0.23 0.31 0.26 0.27 0.11 0.15 0.16 0.23 0.22
DN121 - 0.00 0.17 0.00 - 16.0 0.58 0.02 0.00

RN50-ML - 0.00 0.13 0.00 - 5.23 0.48 0.03 0.00
MoCoV2 - 0.00 0.19 0.00 - 0.44 0.60 0.03 0.00

RN50 - 0.00 0.15 0.00 - 15.5 0.43 0.02 0.00In
eff

.

VGG11 - 0.00 0.17 0.00 - 4.25 0.54 0.05 0.00
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E.9 Additional Results for MS COCO

Table E.3: Comparison of performance of first and second-order search interpretation methods
across different visual search systems on the MSCOCO dataset. Methods introduced in this
work are highlighted in pink. *Though SAM generalizes [287] we refer to it as a baseline. For
additional details see Section 7.8

SB
SM

PS
H
AP

LI
M

E
K
SH

AP

VES
M

GCAM
SA

M
*

IG
SA

M

K
SA

M

M
etr

ic

Ord
er

M
od

el

Model Agnostic Architecture Dependent
DN121 0.18 0.24 0.22 0.22 0.10 0.12 0.11 0.14 0.17

MoCoV2 0.25 0.37 0.33 0.35 0.15 0.23 0.24 0.24 0.28
RN50 0.10 0.14 0.12 0.12 0.04 0.07 0.07 0.07 0.09F

ir
st

VGG11 0.14 0.15 0.14 0.14 0.05 0.09 0.1 0.10 0.12
DN121 0.49 - 0.57 0.57 - - 0.5 0.51 0.49

MoCoV2 0.73 - 0.79 0.79 - - 0.77 0.77 0.78
RN50 0.73 - 0.78 0.78 - - 0.75 0.75 0.73

Fa
it

hf
ul

ne
ss

Se
co

nd

VGG11 0.67 - 0.73 0.73 - - 0.71 0.71 0.72
DN121 - 0.00 0.22 0.00 - 12.3 0.6 0.02 0.00

MoCoV2 - 0.00 0.11 0.00 - 0.46 0.66 0.02 0.00
RN50 - 0.00 0.22 0.00 - 15.8 0.47 0.02 0.00F

ir
st

VGG11 - 0.00 0.31 0.00 - 3.47 0.59 0.04 0.00
DN121 - - 0.15 0.01 - - 0.20 0.01 0.00

MoCoV2 - - 0.10 0.01 - - 0.09 0.02 0.00
RN50 - - 0.07 0.01 - - 0.07 0.02 0.00

In
effi

ci
en

cy

Se
co

nd

VGG11 - - 0.11 0.01 - - 0.19 0.04 0.00
DN121 0.50 - 0.62 0.61 - - 0.62 0.63 0.52

MoCoV2 0.52 - 0.62 0.61 - - 0.64 0.66 0.60
RN50 0.50 - 0.62 0.61 - - 0.63 0.65 0.48m

Io
U

Se
co

nd

VGG11 0.50 - 0.62 0.61 - - 0.66 0.67 0.60
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E.10 Additional Kernel Convergence Results

Figure E.4: Kernel convergence for random functions generated by randomly choosing
coefficients. Results generally mirror those for randomly initialized deep networks

E.11 Generalizing SBSM to Second-Order Search Engine
Interpretability

Before generalizing SBSM [289] to second-order interpretability we will review the original
implementation for marginal interpretability. SBSM uses a sliding square mask and multiple
evaluations of the search engine to determine which regions of the image are important for
similarity. More formally, let q, and r represent the pixels of the query image and retrieved
image. Let M s

ij(q) represent the result of replacing a square of pixels of size s× s centered at
pixel (i, j) with a “background value” which in our case is black. SBSM “slides” this mask
across the query image and compares the similarity between the masked query and retrieved
image. These masked similarity values are compares to the baseline similarity value and
stored in a weight matrix, w:

wij = min
[
d
(
M s

ij(q), r
)
− d (q, r) , 0

]
(E.2)

Intuitively speaking, the weights wij represent the impact of masking a square centered at
(i, j). For areas that are critical to the similarity, this will result in wij > 0. Finally, an
attention mask on the query image is formed by a weighted average of the masks used to
censor the images. For square masks, this can be achieved efficiently using a deconvolution
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with a kernel of ones of size s × s on the weight matrix w. We also note that instead of
evaluating the (expensive) distance computation d for every pixel (i, j), one can also sample
pixels to censor. We use this approach in our second-order generalization.

To generalize SBSM we use a pair of masks, one for the query image and one for the
retrieved image respectively. We sample mask locations and calculate weights designed
to capture the intuition that censoring corresponding areas cause similarity to increase as
opposed to decrease. More specifically we use the following weighting scheme:

whw
ij = min

[
d (q, r)− d

(
M s

ij (q) ,M
s
hq (r)

)
, 0
]

(E.3)

Because evaluating the similarity function for every (i, j, h, w) combination is prohibitively
expensive, we instead sample masked images for our computation. To project attention from
a query pixel, we query for all masks that overlap with the selected query pixel, and then
average their corresponding retrieved masks according to the weights calculated in Equation
E.3.

E.12 Proof of Proposition 7.6.1

Let X = Y = RCHW and represent the space of deep network features where C,H,W
represent a channel, height, and width of the feature maps respectively. Let the function
d :=

∑
cGAP (x)cGAP (y)c. Let the grand coalition, N = [0, H] × [0,W ], index into the

spatial coordinates of the image feature map y. Let the function mask(y, S) act on a feature
map y by replacing the features at locations S with a background signal b. For notational
convenience let ψi(v) := ϕv(i) represent the Shapley value the ith player under the value
function v. We begin by expressing the left-hand side of the proposition:

ψhw(v) = ψhw

(∑
c

GAP (x)cGAP (mask(y, S))c

)

= ψhw

(
1

HW

∑
c

GAP (x)c
∑
h′w′

mask(y, S)ch′w′

)

=
1

HW

∑
h′w′

ψhw

(∑
c

GAP (x)cmask(y, S)ch′w′

)
(Linearity)

=
1

HW
ψhw

(∑
c

GAP (x)cmask(y, S)chw

)
(Dummy)

=
1

HW

∑
c

GAP (x)c(ychw − bchw) (Efficiency)

E.13 Proof of Proposition 7.7.1

Let the spaces X , Y and function d be as in Proposition 7.6.1. As a reminder the function
d represents the un-normalized GAP similarity function. Let the grand coalition, N , index
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into the spatial coordinates of both the query image features x ∈ RCHW and retrieved image
features y ∈ RCHW . Let the function mask(y, S) act on a feature map y by replacing the
corresponding features with a background feature map a for query features and b for retrieved
features. We can represent the set of players, N , as a set of ordered pairs of coordinates
with additional information about which tensor, the query (0) or retrieved (1) features, they
represent:

N = ([1, H]× [1,W ]× {0}) ∪ ([1, H]× [1,W ]× {1}) (E.4)

In the subsequent proof we omit these 0, 1 tags as it is clear from our notation which side,
query or retrieved, the index refers to based on the index h,w for the query and i, j for the
retrieved image. We first consider the zero background value function, v(S ⊂ N), defined by
censoring the spatially varying features prior to global average pooling and comparing their
inner product:

v(S) =

(
1

HW

∑
h,w

x̃chw

)
·

(
1

HW

∑
i,j

ỹcij

)
where

x̃chw =

{
xchw (h,w) ∈ S
0 o.w.

and likewise, for ycij. When S contains all i, j, h, w this represents the similarity judgement
from the GAP network architecture. We seek the Shapley-Taylor index for a pair of image
locations S = {(h,w), (i, j)}. For notational convenience let ψk

S(v) := ϕk
v(S) represent the

k−order interaction effects for the subset S and the value function v.

ψk
S(v) = ψk

S

((
1

HW

∑
h′,w′

x̃ch′w′

)
·

(
1

HW

∑
i′,j′

ỹci′j′

))

= ψk
S

(
1

H2W 2

∑
c

∑
h′,w′

∑
i′,j′

x̃ch′w′ ỹci′j′

)

= ψk
S

(
1

H2W 2

∑
h′,w′

∑
i′,j′

∑
c

x̃ch′w′ ỹci′j′

)

=
∑
h′,w′

∑
i′,j′

ψk
S

(∑
c

1

H2W 2
x̃ch′w′ ỹci′j′

)
(Linearity)

= ψk
S

(∑
c

1

H2W 2
x̃chwỹcij

)
(Dummy)

= ψk
S′ (vhwij) (Renaming)

Where the renaming of the last step was because we can now consider a simplified value
function with just the non-dummy players as vhwij(S

′) :=
∑

c x̃chwỹcij . Where S ′ represents a
subset of the non-dummy players: N ′ = {(h,w), (i, j)}. We can now explicitly calculate the
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index:

ψ2
S′(v) =

2

n

∑
T⊆N ′\S′

δS′vhwij(T )
1(

n−1
t

)
= δS′vhwij(∅)

=
1

H2W 2

∑
c

xchwycij

By following the same set of reasoning, we can introduce nonzero background values achw
and bcij to yield the following:

ψ2
hw,ij(v) =

1

H2W 2

∑
c

xchwycij − xchwbcij − achwycij + achwbcij (E.5)

E.14 Proof that Shapley Taylor is Proportional to Inte-
grated Hessians for GAP architecture

As in Proposition 7.6.2 we consider the soft masking or “multilinear extension” of our
second-order value function v2:

v2(S) : [0, 1]
N → R := d(mask(x, S),mask(y, S)) (E.6)

let hw, and ij be members of the grand coalition N such that hw ̸= ij. We begin our
proof with the expression for the off-diagonal terms of the Integrated Hessian.

Γhw,ij(S) :=

∫ 1

α=0

∫ 1

β=0

αβ
∂2v2(αβS)

∂Thw∂Tij
(E.7)

Where ∂
∂Thw

represents the hw component of the partial derivative with respect to αβS, not
to be confused with the partial derivative of just S. Like in our proof of Proposition 7.6.2,
because our function is defined on the interval [0, 1]N many of the terms mentioned in [324]
drop out and instead are captured in the Hessian of the function with repspect to the soft
mask. We now expand the definition of v2(αβS):

v2(αβS) = d(mask(x, αβS),mask(y, αβS))

=
1

H2W 2

∑
c

(∑
h,w

achw + αβShw(xchw − achw)

)(∑
i,j

bcij + αβSij(ycij − bcij)

)
From this function we can read off the appropriate term of the hessian with respect to the
mask at location (h,w) and location (i, j)

∂2v2(αβS)

∂Thw∂Tij
=

1

H2W 2

∑
c

xchwycij − xchwbcij − achwycij + achwbcij

= ψ2
hw,ij(v)
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We can now pull this outside the integral to yeild:

Γhw,ij(v2) =

∫ 1

α=0

∫ 1

β=0

αβ
∂2v2(αβS)

∂Thw∂Tij

= ψ2
hw,ij(v)

∫ 1

α=0

∫ 1

β=0

αβ

=
1

4
ψ2
hw,ij(v)

Which proves that the Shapley-Taylor index and second order Aumann-Shapley values are
proportional for the GAP architecture.

E.15 Explaining Dissimilarity

In addition to explaining the similarity between two images, our methods naturally explain
image dissimilarity. In particular, regions with a negative Shapely values (Blue regions in
Figure E.5) contribute negatively to the similarity between the two images. These coefficients
can be helpful when trying to understand why an algorithm does not group two images
together.

Figure E.5: Explanation of why two images are similar (Red) and dissimilar (Blue). Blue
regions highlight major differences between the images such as the dog playing the guitar,
and the chain-link fence in the retrieved image.
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E.16 On the “Axiomatic” terminology

The term “axiomatic” can mean different things to different readers. When this work
refers to “axiomatic” methods we refer to methods that approximate the uniquely specified
explanation values dictated by the axioms of fair-credit assignment. In the first-order case,
these explanations are the Shapey Values and satisfy the axioms of linearity, efficiency, dummy,
and symmetry. In the higher-order case these fair credit assignments are the Shapley-Taylor
Indices and satisfy analogous axioms [292]. We note that our methods converge to the true
Shapley and Shapley-Taylor indices and thus the deviations that arise as part of convergence
induce corresponding deviations from the axioms of fair credit assignment. Nevertheless, we
find that these deviations become negligible as our methods converge to the true Shapley and
Shapley-Taylor values. This starkly contrasts the behavior of methods that do not converge
to values that satisfy the axioms of fair credit assignment such as GradCAM as shown in
Figure E.2.
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Appendix F

Appendix for Chapter 8

F.1 Additional Experiments on Debiasing Feature Learn-
ing

The following experiments aim to test the effect of our debiasing approach in feature learning.
We followed the experimental setup introduced by Hu et al. [337]. The architecture consisted of
a ResNet-34 backbone paired with a two-layer multilayer perceptron (MLP) feature extractor.
The MLP included a hidden layer with 512 units and an output layer with 64 units, without
batch normalization.

CIFAR-10 & CIFAR-100. The models were trained on the CIFAR-10 dataset for 1000
epochs using the AdamW optimizer with the following hyperparameters: β1 = 0.9, β2 = 0.999,
a learning rate of 1× 10−3, a batch size of 1024, and a weight decay of 1× 10−5. The learned
kernel was either Gaussian or Student’s t-distribution with degrees of freedom df = 2.

For evaluation, we used two methods: (1) linear probing on the 512-dimensional embed-
dings from the MLP’s hidden layer, and (2) k-nearest neighbors (k = 3) classification based
on the same embeddings for CIFAR-10 (in-distribution) and CIFAR-100 (out-of-distribution).

STL-10 & Oxford-IIIT Pet. With a similar setup, the models were trained contrastively
on STL-10 (in distribution) without labels using the same hyperparameters as in the CIFAR
experiments. For evaluation, we performed (1) linear probing for the STL-10 classification
task and Oxford-IIIT Pet binary classification, and (2) k-nearest neighbors classification
based on the same embeddings for STL-10 and Oxford-IIIT Pet with k = 10.
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Method CIFAR10 (in distribution) CIFAR100 (out of distribution)
Linear Probing KNN Linear Probing KNN

qϕ is a Gaussian Distribution

SimCLR [348] 77.79 80.02 31.82 40.27
DCL [369] 78.32 83.11 32.44 42.10
Ours α = 0.2 79.50 84.07 32.53 43.19
Ours α = 0.4 79.07 85.06 32.53 43.29
Ours α = 0.6 79.32 85.90 30.67 29.79

qϕ is a Student’s t-distribution

t-SimCLR[337] 90.97 88.14 38.96 30.75
DCL [369] Diverges Diverges Diverges Diverges
Ours α = 0.2 91.31 88.34 41.62 32.88
Ours α = 0.4 92.70 88.50 41.98 34.26
Ours α = 0.6 92.86 88.92 38.92 32.51

Table F.1: Contrastive feature learning evaluation results for CIFAR10 and CIFAR100
datasets with various debasing α factors. Adding some amount of debasing helps raising
accuracy in both linear probing and KNN classification.
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Method STL-10 (in distribution) Oxford-IIIT Pet (out of distribution)
Linear Probing KNN Logistic Regression KNN

SimCLR [348] 77.71 74.92 74.80 71.48
DCL [369] 78.32 75.03 74.41 70.22

qϕ is a Student’s t-distribution

t-SimCLR[337] 85.11 83.05 83.40 81.41
Ours α = 0.2 85.94 83.15 84.11 81.15
Ours α = 0.4 86.13 84.14 84.07 84.13
Ours α = 0.6 87.18 83.58 84.51 83.04

Table F.2: Contrastive feature learning evaluation results for STL10 (in distribution)
and Oxford-IIIT Pet (out of distribution) with various debasing α factors. Similar to the
other experiments, our debasing helps raising accuracy in both linear probing and KNN
classification.

215



(a) STL-10 embeddings for SimCLR & DCL (b) CIFAR-10 embeddings for SimCLR & DCL

(c) CIFAR10 embeddings for models trained on
with Gaussian distribution qϕ

(d) CIFAR10 features for models trained with
Student’s t-distribution qϕ

(e) STL-10 features for models trained with Student’s t-distribution qϕ

Figure F.1: t-SNE visualizations of learned embeddings on CIFAR10 and STL10 datasets.
(a) and (b) display embeddings from the DCL [369] method before and after applying
debiasing, showing a tendency to heavily cluster data points, which may hinder out-of-
distribution generalization [337]. (c) and (d) show embeddings with Student’s t-distribution,
where the debiasing factor α enhances clustering and separation, resulting in improved data
representation.
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F.2 Proofs for Unifying Dimensionality Reduction Meth-
ods

We begin by defining the setup for dimensionality reduction methods in the context of
I-Con. Let xi ∈ Rd represent high-dimensional data points, and ϕi ∈ Rm represent their
corresponding low-dimensional embeddings, where m≪ d. The goal of dimensionality reduc-
tion methods, such as Stochastic Neighbor Embedding (SNE) and t-Distributed Stochastic
Neighbor Embedding (t-SNE), is to learn these embeddings such that neighborhood structures
in the high-dimensional space are preserved in the low-dimensional space. In this context,
the low-dimensional embeddings ϕi can be interpreted as the outputs of a mapping function
fθ(xi), where fθ is essentially an embedding matrix or look-up table. The I-Con framework
is well-suited to express this relationship through a KL divergence loss between two neigh-
borhood distributions: one in the high-dimensional space and one in the low-dimensional
space.

Theorem F.2.1. Stochastic Neighbor Embedding (SNE) [346] is an instance of the I-Con
framework.

Proof. This is one of the most straightforward proofs in this chapter, essentially based on the
definition of SNE. The target distribution (supervised part), described by the neighborhood
distribution in the high-dimensional space, is given by:

pθ(j|i) =
exp (−∥xi − xj∥2/2σ2

i )∑
k ̸=i exp (−∥xi − xk∥2/2σ2

i )
,

while the learned low-dimensional neighborhood distribution is:

qϕ(j|i) =
exp (−∥ϕi − ϕj∥2)∑
k ̸=i exp (−∥ϕi − ϕk∥2)

.

The objective is to minimize the KL divergence between these distributions:

L =
∑
i

DKL(pθ(·|i)∥qϕ(·|i)) =
∑
i

∑
j

pθ(j|i) log
pθ(j|i)
qϕ(j|i)

.

The embeddings θi are learned implicitly by minimizing L. The mapper is an embedding
matrix, as SNE is a non-parametric optimization. Therefore, SNE is a special case of the
I-Con framework, where pθ(j|i) and qϕ(j|i) represent the neighborhood probabilities in the
high- and low-dimensional spaces, respectively.

Corollary 1 (t-SNE [347]). t-SNE is an instance of the I-Con framework.

Proof. The proof is similar to the one for SNE. While the high-dimensional target distribution
pθ(j|i) remains unchanged, t-SNE modifies the low-dimensional distribution to a Student’s
t-distribution with one degree of freedom (Cauchy distribution):

qϕ(j|i) =
(1 + ∥ϕi − ϕj∥2)−1∑
k ̸=i(1 + ∥ϕi − ϕk∥2)−1

.

The objective remains to minimize the KL divergence. Therefore, t-SNE is an instance of the
I-Con framework.
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Proposition F.2.1. Let X := {xi}ni=1, then the following cohesion variance loss

Lcohesion-var =
1

n

∑
ij

wij∥fϕ(xi)− fϕ(xj)∥2 − 2Var(X)

is an instance of I − Con in the special case wij = p(j|i) and qϕ is Gaussian as with a large
width as σ →∞.

Proof. By using AM-GM inequality, we have

1

n

n∑
k=1

e−zk ≥ (Πn
k=1e

−zk)
1
n =⇒ 1

n

n∑
k=1

e−zk ≥ (e−
∑n

k=1 zk)
1
n

which implies that

log
n∑

k=1

e−zk − log n ≥ log
(
e−

∑n
k=1 zk

) 1
n

=⇒ log
n∑

k=1

e−zk ≥ − 1

n

n∑
k=1

zk + log(n)

Alternatively, this can be written as

− log
n∑

k=1

e−zk ≤ 1

n

n∑
k=1

zk − log(n)

Now assume that we have a Gaussian Kernel qϕ

qϕ(j|i) =
exp (−∥fϕ(xi)− fϕ(xj)∥2/σ2)∑
k ̸=i exp (−∥fϕ(xi)− fϕ(xk)∥2/σ2)

,

Therefore, given the inequality of exp-sum that we showed above, we have

log qϕ(j|i) = −
∥fϕ(xi)− fϕ(xj)∥2

σ2
− log

∑
k ̸=i

exp

(
−∥fϕ(xi)− fϕ(xk)∥

2

σ2

)
≤ − 1

σ2
∥fϕ(xi)− fϕ(xj)∥2 +

1

nσ2

∑
k ̸=i

∥fϕ(xi)− fϕ(xk)∥2 − log(n)

= − 1

σ2
(−∥fϕ(xi)− fϕ(xj)∥2 +

1

n

∑
k ̸=i

∥fϕ(xi)− fϕ(xk)∥2)− log(n)
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Therefore, the cross entropy H(pθ, qϕ), is bounded by

H(pθ, qϕ) = −
1

n

∑
i

∑
j

p(j|i) log qϕ(j|i)

≤ 1

n

∑
i

∑
j

p(j|i)

(
1

σ2
(−∥fϕ(xi)− fϕ(xj)∥2 +

1

n

∑
k ̸=i

∥fϕ(xi)− fϕ(xk)∥2)− log(n)

)

=
1

σ2

(
1

n

∑
ij

p(j|i)∥fϕ(xi)− fϕ(xj)∥2 −
1

n2

∑
ijk

p(j|i)∥fϕ(xi)− fϕ(xk)∥2
)
− log(n)

=
1

σ2

(
1

n

∑
ij

p(j|i)∥fϕ(xi)− fϕ(xj)∥2 − 2Var(X)

)
+ log(n)

=
1

σ2

(
1

n

∑
ij

p(j|i)∥fϕ(xi)− fϕ(xj)∥2 − 2Var(X)

)
+ log(n)

=
1

σ2
Lcohesion-var + log(n)

On the other hand, the L.H.S. can be upper bounded by using second order bound e−z ≤
1− z + z2/2, which implies that

− log
n∑

k=1

e−zk ≥ log(1− 1

n

n∑
k=1

zk +
1

n

n∑
k=1

z2k)− log(n)

On the other hand, log(1 + u) ≥ u− u2/2, therefore,

− log
n∑

k=1

e−zk ≥ (1− 1

n

n∑
k=1

zk +
1

n

n∑
k=1

z2k)−
1

2
(1− 1

n

n∑
k=1

zk +
1

n

n∑
k=1

z2k)
2 − log(n)

Therefore, in the limit σ →∞, the bounds become tighter and the I-Con loss approaches the
cohesion variance loss.

Theorem F.2.2. Principal Component Analysis (PCA) is an asymptotic instance of the
I-Con.

Proof. By using Proposition F.2.1. When pj|i = 1[i = j], we have the following expression
for L

L =
1

n

∑
ij

pj|i∥fϕ(xi)− fϕ(xj)∥2 − 2Var(X)

=
1

n

∑
i

∥fϕ(xi)− fϕ(xi)∥2 − 2Var(X)

= −2Var(X)
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Therefore, minimizing L is equivalent to maximizing the variance which is the equivalent of
the PCA objective. Intuitivily, the KL divergence is asking −∥fϕ(xi)− fϕ(xi)∥2 = 0 to be the
maximum in comparison to −∥fϕ(xi)− fϕ(xj)∥2 to match the supervisory indicator function,
which implies the minimization of the sum of −∥fϕ(xi) − fϕ(xj)∥2, which is maximizing
the variance. If we restrict fϕ to be a linear projection map, then minimizing L would be
equivalent to PCA.

F.3 Proofs for Unifying Feature Learning Methods

We now extend the I-Con framework to feature learning methods commonly used in contrastive
learning. Let xi ∈ Rd be the input data points, and fϕ(xi) ∈ Rm be their learned feature
embedding. In contrastive learning, the goal is to learn these embeddings such that similar
data points (positive pairs) are close in the embedding space, while dissimilar points (negative
pairs) are far apart. This setup can be expressed using a neighborhood distribution in
the original space, where "neighbors" are defined not by proximity in Euclidean space, but
by predefined relationships such as data augmentations or class membership. The learned
embeddings fϕ(xi) define a new distribution over neighbors, typically using a Gaussian kernel
in the learned feature space. We show that InfoNCE is a natural instance of the I-Con
framework, and many other methods, such as SupCon, CMC, and Cross Entropy, follow from
this.

Theorem F.3.1 (InfoNCE [360]). InfoNCE is an instance of the I-Con framework.

Proof. InfoNCE aims to maximize the similarity between positive pairs while minimizing it
for negative pairs in the learned feature space. In the I-Con framework, this can be interpreted
as minimizing the divergence between two distributions: the neighborhood distribution in
the original space and the learned distribution in the embedding space.

The neighborhood distribution pθ(j|i) is uniform over the positive pairs, defined as:

pθ(j|i) =

{
1
k

if xj is among the k positive views of xi,
0 otherwise.

where k is the number of positive pairs for xi.
The learned distribution qϕ(j|i) is based on the similarities between the embeddings fϕ(xi)

and fϕ(xj), constrained to unit norm (∥fϕ(xi)∥ = 1). Using a temperature-scaled Gaussian
kernel, this distribution is given by:

qϕ(j|i) =
exp (fϕ(xi) · fϕ(xj)/τ)∑
k ̸=i exp (fϕ(xi) · fϕ(xk)/τ)

,

where τ is the temperature parameter controlling the sharpness of the distribution. Since
∥fϕ(xi)∥ = 1, the Euclidean distance between fϕ(xi) and fϕ(xj) is 2− 2(fϕ(xi) · fϕ(xj)).

The InfoNCE loss can be written in its standard form:

LInfoNCE = −
∑
i

log
exp

(
fϕ(xi) · fϕ(x+i )/τ

)∑
k exp (fϕ(xi) · fϕ(xk)/τ)

,
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where j+ is the index of a positive pair for i. Alternatively, in terms of cross-entropy, the loss
becomes:

LInfoNCE ∝
∑
i

∑
j

pθ(j|i) log qϕ(j|i) = H(pθ, qϕ),

where H(pθ, qϕ) denotes the cross-entropy between the two distributions. Since pθ(j|i) is
fixed, minimizing the cross-entropy H(pθ, qϕ) is equivalent to minimizing the KL divergence
DKL(pθ∥qϕ). By aligning the learned distribution qϕ(j|i) with the target distribution pθ(j|i),
InfoNCE operates within the I-Con framework, where the neighborhood structure in the
original space is preserved in the embedding space. Thus, InfoNCE is a direct instance of
I-Con, optimizing the same divergence-based objective.

Corollary 2. t-SimCLR and t-SimCNE [337, 339] are instances of the I-Con framework.

Given the proof of Theorem F.3.1, we can see that t-SimCLR is equivelant by having
the same pθ but qϕ would change from a Gaussian distribution over cosine similarity to a
Student-T distribution over a Euclidean distance.

qϕ(j|i) =
(∥fϕ(xi)− fϕ(xj)∥2/τ)−1∑
k ̸=i (∥fϕ(xi)− fϕ(xk)∥2/τ)

−1 ,

Theorem F.3.2. VICReg [362] without a covariance term is an instance of the I-Con
framework.

Given Proposition F.2.1, we know that any loss in the cohesion variance form is an
instance of I-Con:

L =
1

n

∑
ij

pj|i∥fϕ(xi)− fϕ(xj)∥2 − 2Var(X)

If we choose pj|i to be an indicator over positive pairs, i and i+, we obtain

L =
1

n

∑
i

∥fϕ(xi)− fϕ(xi+)∥2 − 2Var(X)

which is the VICReg loss without the covariance term and with an invariance-to-variance
term ratio of 1:2. Observe that VICReg does not have negative pairs because it applies an
equal repulsion force to all points. This is equivalent to taking σ → ∞ in the conditional
Gaussian distribution over the embeddings.

Theorem F.3.3 (Triplet Loss [361]). Triplet Loss can be viewed as an instance of the I-Con
framework with the following distributions pθ(j|i) and qϕ(j|i):

pθ(j|i) =

{
1
k

if xj is among the k positive views of xi,
0 otherwise,

qϕ(j|i) =
exp

(
−∥fϕ(xi)−fϕ(xj)∥2

σ2

)
∑

k ̸=i exp
(
−∥fϕ(xi)−fϕ(xk)∥2

σ2

) ,
particularly in the special case where only two neighbors are considered: one positive view
and one negative view.
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Proof. The idea of this proof was first presented at [363] using Taylor Approximation; however,
in this proof we present a stronger bounds for this result. For simplicity, we set σ = 1 (the
general bounds for other σ values are provided at the end of the proof).

L = − 1

N

∑
i

∑
j

qϕ(j|i) log
exp (−∥fϕ(xi)− fϕ(xj)∥2)∑
k ̸=i exp (−∥fϕ(xi)− fϕ(xk)∥2)

.

In the special case where each anchor xi has exactly one positive x+i and one negative x−i
example, the denominator simplifies to:∑
k ̸=i

exp
(
−∥fϕ(xi)− fϕ(xk)∥2

)
= exp

(
−∥fϕ(xi)− fϕ(x+i )∥2

)
+ exp

(
−∥fϕ(xi)− fϕ(x−i )∥2

)
.

Let d+i = ∥fϕ(xi)− fϕ(x+i )∥2 and d−i = ∥fϕ(xi)− fϕ(x−i )∥2. Substituting these into the loss
function, we obtain:

L = − 1

N

∑
i

log
exp

(
−d+i

)
exp

(
−d+i

)
+ exp

(
−d−i

)
= − 1

N

∑
i

log

(
1

1 + exp
(
d−i − d+i

))
=

1

N

∑
i

log
(
1 + exp

(
d+i − d−i

))
.

Recognizing that the expression inside the logarithm is the softplus function, we can
leverage its well-known bounds:

max(z, 0) ≤ log (1 + exp(z)) ≤ max(z, 0) + log(2).

By letting z = d+i − d−i , we substitute into the bounds to obtain:

1

N

∑
i

max(d+i − d−i , 0) ≤ L ≤
1

N

∑
i

max(d+i − d−i , 0) + log(2),

where the left-hand side is the Triplet loss LTriplet =
1
N

∑
i max(d+i − d−i , 0). Therefore, we

obtain the following bounds:

L − log(2) ≤ LTriplet ≤ L.

For a general σ, the inequality bounds are as follows:

Lσ − σ2 log(2) ≤ LTriplet ≤ Lσ,

where

Lσ = −σ
2

N

∑
i

∑
j

qϕ(j|i) log
exp

(
−∥fϕ(xi)−fϕ(xj)∥2

σ2

)
∑

k ̸=i exp
(
−∥fϕ(xi)−fϕ(xk)∥2

σ2

) .
As σ approaches 0, LTriplet approaches Lσ.
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Theorem F.3.4. The Supervised Contrastive Loss [363] is an instance of the I-Con framework.

Proof. This follows directly from Theorem F.3.1. Define the supervisory and target distribu-
tions as:

qϕ(j | i) =
exp (fϕ(xi) · fϕ(xj)/τ)∑
k ̸=i exp (fϕ(xi) · fϕ(xk)/τ)

,

pθ(j | i) =
1

Ki − 1
1[i and j share the same label],

where fϕ is the mapping to deep feature space and Ki is the number of samples in the class of
i. Substituting these definitions into the I-Con framework recovers the Supervised Contrastive
Loss.

Theorem F.3.5. The X-Sample Contrastive Learning Loss [336] is an instance of the I-Con
framework.

Proof. Consier the following p distribution over corresponding features (e.g. caption embed-
dings for images):

exp
(
gθ(xi) · gθ(xj)

)∑
k ̸=i

exp
(
gθ(xi) ·θ (xk)

)
where g could be either a parametric or a non-parametric mapper to the corresponding
embeddings gθ(xi). On the other hand, similar to most feature learning methods, the learned
distribution is a Gaussian over learned embeddings with cosine distance

qϕ(j | i) =
exp
(
fϕ(xi) · fϕ(xj)

)∑
k ̸=i

exp
(
fϕ(xi) · fϕ(xk)

)
where fϕ is the mapping to deep feature space.

Theorem F.3.6. Contrastive Multiview Coding (CMC) and CLIP are instances of the I-Con
framework.

Proof. Since we have already established that InfoNCE is an instance of the I-Con framework,
this corollary follows naturally. The key difference in Contrastive Multiview Coding (CMC)
and CLIP is that they optimize alignment across different modalities. The target probability
distribution pθ(j|i) can be expressed as:

pθ(j|i) =
1

Z
1[i and j are positive pairs and Vi ̸= Vj],

where Vi and Vj represent the modality sets of xi and xj, respectively. Here, pθ(j|i) assigns
uniform probability over positive pairs drawn from different modalities.

The learned distribution qϕ(j|i), in this case, is based on a Gaussian similarity between
deep features, but conditioned on points from the opposite modality set. Thus, the learned
distribution is defined as:

qϕ(j|i) =
exp (−∥fϕ(xi)− fϕ(xj)∥2)∑

k∈Vj
exp (−∥fϕ(xi)− fϕ(xk)∥2)

.
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This formulation shows that CMC and CLIP follow the same principles as InfoNCE
but apply them in a multiview setting, fitting seamlessly within the I-Con framework by
minimizing the divergence between the target and learned distributions across different
modalities.

Theorem F.3.7. Cross-Entropy classification is an instance of the I-Con framework.

Proof. Cross-Entropy can be viewed as a special case of the CMC loss, where one "view"
corresponds to the data point features and the other to the class logits. The affinity between a
data point and a class is based on whether the point belongs to that class. This interpretation
has been explored in prior work, where Cross-Entropy was shown to be related to the CLIP
loss [338].

Theorem F.3.8. Harmonic Loss for classification is an instance of the I-Con framework.

Proof. This is the equivalent of moving from a Gaussian distribution for q(j|i) in Cross-
Entropy to a Student-T distribution analogs to moving from SNE to t-SNE. More specifically,
let V be the set of data points, C the set of class prototypes, ϕi be the learned class prototype
for class i, and n be the harmonic loss degree.

Consider the following p, which is a data-label indicator

p(j|i) = 1
[
i belongs to class j

]
and the following q, which is a Student-T distribution with 2n− 1 degrees for freedom.

lim
σ→0

(1 + ∥fϕ(xi)− ϕj∥2/((2n− 1)σ2))−n∑
k∈C(1 + ∥fϕ(xi)− ϕk∥2/((2n− 1)σ2))−n

It can be rewritten as

lim
σ→0

(((2n− 1)σ2) + ∥fϕ(xi)− ϕj∥2)−n∑
k∈C(((2n− 1)σ2) + ∥fϕ(xi)− ϕk∥2/)−n

As σ →∞, the loss function approaches

L =
∑
i∈C

(∥fϕ(xi)− ϕj∥2)−n∑
k∈C(∥fϕ(xi)− ϕk∥2/)−n

which’s the Harmonic Loss for classification as introduced by F.3.8

Theorem F.3.9. Masked Language Modeling (MLM) [367] loss is an instance of the I-Con
framework.

Proof. In Masked Language Modeling, the objective is to predict a masked token j given its
surrounding context xi. This setup fits naturally within the I-Con framework by defining
appropriate target and learned distributions.

The target distribution pθ(j|i) is the empirical distribution over contexts i and tokens j,
defined as:

pθ(j|i) =
1

Z
# [Context i precedes token j] ,
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where # [Context i precedes token j] counts the number of times token j follows context xi
in the training corpus and Z is a normalization constant ensuring that

∑
j pθ(j|i) = 1.

The learned distribution qϕ(j|i) is modeled using the neural network’s output logits for
token predictions. It is defined as a softmax over the dot product between the context
embedding fϕ(xi) and the token embeddings ϕj:

qϕ(j|i) =
exp (fϕ(xi) · ϕj)∑
k∈V exp (fϕ(xi) · ϕk)

,

where fϕ(xi) is the embedding of the context xi produced by the model, ϕj is the embedding
of token j, and V is the vocabulary of all possible tokens.

The MLM loss aims to minimize the cross-entropy between the target distribution pθ(j|i)
and the learned distribution qϕ(j|i):

LMLM = −
∑
i

∑
j

pθ(j|i) log qϕ(j|i) = H(pθ, qϕ).

Since in practice, for each context xi, only the true masked token j∗i is considered, the
target distribution simplifies to:

pθ(j|i) = δj,j∗i ,

where δj,j∗i is the Kronecker delta function, equal to 1 if j = j∗i and 0 otherwise.
Substituting this into the loss function, the MLM loss becomes:

LMLM = −
∑
i

log qϕ(j
∗
i |xi).

F.4 Proofs for Unifying Clustering Methods

The connections between clustering and the I-Con framework are more intricate compared
to the dimensionality reduction methods discussed earlier. To establish these links, we first
introduce a probabilistic formulation of K-means and demonstrate its equivalence to the
classical K-means algorithm, showing that it is a zero-gap relaxation. Building upon this, we
reveal how probabilistic K-means can be viewed as an instance of I-Con, leading to a novel
clustering kernel. Finally, we show that several clustering methods implicitly approximate
and optimize for this kernel.

Definition 1 (Classical K-means). Let x1, x2, . . . , xN ∈ Rn denote the data points, and
µ1, µ2, . . . , µm ∈ Rn be the cluster centers.

The objective of classical K-means is to minimize the following loss function:

Lk-Means =
N∑
i=1

m∑
c=1

1(c(i) = c)∥xi − µc∥2,

where c(i) represents the cluster assignment for data point xi, and is defined as:

c(i) = argmin
c
∥xi − µc∥2.
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Probabilistic K-means Relaxation

In probabilistic K-means, the cluster assignments are relaxed by assuming that each data
point xi belongs to a cluster c with probability ϕic. In other words, ϕi represents the cluster
assignments vector for xi

Proposition F.4.1. The relaxed loss function for probabilistic K-means is given by:

LProb-k-Means =
N∑
i=1

m∑
c=1

ϕic∥xi − µc∥2,

and is equivalent to the original K-means objective Lk-Means. The optimal assignment proba-
bilities ϕic are deterministic, assigning probability 1 to the closest cluster and 0 to others.

Proof. For each data point xi, the term
∑m

c=1 ϕic∥xi−µc∥2 is minimized when the assignment
probabilities ϕic are deterministic, i.e.,

ϕic =

{
1 if c = argminj ∥xi − µj∥2,
0 otherwise.

With these deterministic probabilities, LProb-k-Means simplifies to the classical K-means objec-
tive, confirming that the relaxation introduces no gap.

Contrastive Formulation of Probabilistic K-means

Definition 2. Let {xi}Ni=1 be a set of data points. Define the conditional probablity qϕ(j|i) as:

qϕ(j|i) =
m∑
c=1

ϕicϕjc∑N
k=1 ϕkc

,

where ϕi is the soft-cluster assignments for xi.

Given qϕ(j|i), we can reformulate probabilistic K-means as a contrastive loss:

Theorem F.4.1. Let {xi}Ni=1 ∈ Rn and {ϕic}Ni=1 be the corresponding assignment probabilities.
Define the objective function L as:

L = −
∑
i,j

(xi · xj) qϕ(j|i).

Minimizing L with respect to the assignment probabilities {ϕic} yields optimal cluster assign-
ments equivalent to those obtained by K-means.

Proof. The relaxed probabilistic K-means objective LProb-k-Means is:

LProb-k-Means =
N∑
i=1

m∑
c=1

ϕic∥xi − µc∥2.
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Expanding this, we obtain:

LProb-k-Means =
m∑
c=1

(
N∑
i=1

ϕic

)
∥µc∥2 − 2

m∑
c=1

(
N∑
i=1

ϕicxi

)
· µc +

N∑
i=1

∥xi∥2.

The cluster centers µc that minimize this loss are given by:

µc =

∑N
i=1 ϕicxi∑N
i=1 ϕic

.

Substituting µc back into the loss function, we get:

L = −
∑
i,j

(xi · xj) qϕ(j|i),

which proves that minimizing this contrastive formulation leads to the same clustering
assignments as classical K-means.

Corollary 3. The alternative loss function:

L = −
∑
i,j

∥xi − xj∥2 qϕ(j|i),

yields the same optimal clustering assignments when minimized with respect to {ϕic}.

Proof. Expanding the squared norm in the loss function gives:

L = −
∑
i,j

(
∥xi∥2 − 2xi · xj + ∥xj∥2

)
qϕ(j|i).

The terms involving ∥xi∥2 and ∥xj∥2 simplify since
∑

j qϕ(j|i) = 1, reducing the loss to:

L = 2

(
−
∑
i,j

xi · xjqϕ(j|i)

)
,

which is equivalent to the objective in the previous theorem.

Probabilistic K-means as an I-Con Method

In the I-Con framework, the target and learned distributions represent affinities between
data points based on specific measures. For instance, in SNE, these measures are Euclidean
distances in high- and low-dimensional spaces, while in SupCon, the distances reflect whether
data points belong to the same class. Similarly, we can define a measure of neighborhood
probabilities in the context of clustering, where two points are considered neighbors if they
belong to the same cluster. The probability of selecting xj as xi’s neighbor is the probability
that a point, chosen uniformly at random from xi’s cluster, is xj. More explicitly, let qϕ(j|i)
represent the probability that xj is selected uniformly at random from xi’s cluster:

qϕ(j|i) =
m∑
c=1

ϕicϕjc∑N
k=1 ϕkc

.
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Theorem F.4.2 (K-means as an instance of I-Con). Given data points {xi}Ni=1, define the
neighborhood probabilities pθ(j|i) and qϕ(j|i) as:

pθ(j|i) =
exp (−∥xi − xj∥2/2σ2)∑
k exp (−∥xi − xk∥2/2σ2)

, qϕ(j|i) =
m∑
c=1

ϕicϕjc∑N
k=1 ϕkc

.

Let the loss function Lc-SNE be the sum of KL divergences between the distributions qϕ(j|i)
and pθ(j|i):

Lc-SNE =
∑
i

DKL(qϕ(·|i)∥pθ(·|i)).

Then,

Lc-SNE =
1

2σ2
LProb-k-Means −

∑
i

H(qϕ(·|i)),

where H(qϕ(·|i)) is the entropy of qϕ(·|i).

Proof. For simplicity, assume that 2σ2 = 1. Denote
∑

k exp (−∥xi − xk∥2) by Zi. Then we
have:

log pθ(j|i) = −∥xi − xj∥2 − logZi.

Let Li be defined as −
∑

j ∥xi − xj∥
2 qϕ(j|i). Using the equation above, Li can be rewritten

as:

Li = −
∑
j

∥xi − xj∥2 qϕ(j|i) (F.1)

=
∑
j

(log(pθ(j|i)) + log(Zi))qϕ(j|i) (F.2)

=
∑
j

qϕ(j|i) log(pθ(j|i)) +
∑
j

qϕ(j|i) log(Zi) (F.3)

=
∑
j

qϕ(j|i) log(pθ(j|i)) + log(Zi) (F.4)

= H(qϕ(·|i), pθ(·|i)) + log(Zi) (F.5)
= DKL(qϕ(·|i)∥pθ(·|i)) +H(qϕ(·|i)) + log(Zi). (F.6)

Therefore, LProb-KMeans, as defined in Corollary 3, can be rewritten as:

LProb-KMeans = −
∑
i

∑
j

∥xi − xj∥2 qϕ(j|i) =
∑
i

Li (F.7)

=
∑
i

DKL(qϕ(·|i)∥pθ(·|i)) +H(qϕ(·|i)) + log(Zi) (F.8)

= Lc-SNE +
∑
i

H(qϕ(·|i)) + constant. (F.9)

Therefore,
Lc-SNE = LProb-KMeans −

∑
i

H(qϕ(·|i)).
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If we allow σ to take any value, the entropy penalty will be weighted accordingly:

Lc-SNE =
1

2σ2
LProb-KMeans −

∑
i

H(qϕ(·|i)).

Note that the relation above is up to an additive constant. This implies that minimizing the
contrastive probabilistic K-means loss with entropy regularization minimizes the sum of KL
divergences between qϕ(·|i) and pθ(·|i).

Corollary 4. Spectral Clustering is an instance of the I-Con framework.

Proof. From Theorem F.4.2, we know that K-Means clustering can be formulated as an
instance of the I-Con framework, where the clustering assignments depend on the inner
products of the data points.

Spectral Clustering extends this idea by first embedding the data into a lower-dimensional
space using the top k eigenvectors of the normalized Laplacian derived from the affinity matrix
A. The affinity matrix A is constructed using a similarity measure (e.g., an RBF kernel) and
encodes the probabilities of assignments between data points. Given this transformation,
spectral clustering is an instance of I-Con on the projected embeddings.

Theorem F.4.3. Normalized Cuts [354] is an instance of I-Con.

Proof. The proof for this follows naturally from our work on K-Means analysis. The loss
function for normalized cuts is defined as:

LNormCuts =
m∑
c=1

cut(Ac, Ac)

vol(Ac)
,

where Ac is a subset of the data corresponding to cluster c, Ac is its complement, and
cut(Ac, Ac) represents the sum of edge weights between Ac and Ac, while vol(Ac) is the total
volume of cluster Ac, i.e., the sum of edge weights within Ac.

Similar to K-Means, by reformulating this in a contrastive style with soft-assignments, the
learned distribution can be expressed using the probabilistic cluster assignments ϕic = p(c|xi)
as:

qϕ(j|i) =
m∑
c=1

ϕicϕjcdj∑N
k=1 ϕkcdk

,

where dj is the degree of node xj, and the volume and cut terms can be viewed as weighted
sums over the soft-assignments of data points to clusters.

This reformulation shows that normalized cuts can be written in a manner consistent
with the I-Con framework, where the target distribution pθ(j|i) and the learned distribution
qϕ(j|i) represent affinity relationships based on graph structure and cluster assignments.

Thus, normalized cuts is an instance of I-Con, where the loss function optimizes the
neighborhood structure based on the cut and volume of clusters in a manner similar to
K-Means and its probabilistic relaxations.

Theorem F.4.4. Mutual Information Clustering is an instance of I-Con.
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Proof. Given the connection established between SimCLR, K-Means, and the I-Con frame-
work, this result follows naturally. Specifically, the target distribution pθ(j|i) (the supervised
part) is a uniform distribution over observed positive pairs:

pθ(j|i) =

{
1
k

if xj is among the k positive views of xi,
0 otherwise.

On the other hand, the learned embeddings ϕi represent the probabilistic assignments of
xi into clusters. Therefore, similar to the analysis of the K-Means connection, the learned
distribution is modeled as:

qϕ(j|i) =
m∑
c=1

ϕicϕjc∑N
k=1 ϕkc

.

This shows that Mutual Information Clustering can be viewed as a method within the I-Con
framework, where the learned distribution qϕ(j|i) aligns with the target distribution pθ(j|i),
completing the proof.

F.5 I-Con as a Variational Method

Variational bounds for mutual information are widely explored and have been connected to
loss functions such as InfoNCE, where minimizing InfoNCE maximizes the mutual information
lower bound [101, 401]. The proof usually starts by rewriting the mutual information:

I(X;Y ) = Ep(x,y)

[
log

q(x|y)
p(x)

]
+ Ep(y) [DKL (p(x|y) ∥ q(x|y))]

This expression is typically used to derive a lower bound for I(X;Y ). The proof usually
begins by assuming that p is uniform over discrete data points X = {xi}Ni=1 (i.e., we use uniform
sampling for data points). By using the fact that p(xi) = 1

N
, we can write p(x, y) = 1

N
p(x|y).

Therefore, the mutual information lower bound becomes

I(X;Y ) ≥ Ep(x,y) [log q(x|y)]− Ep(x,y) [log p(x)]

= Ep(x,y) [log q(x|y)] + log(N)

=
1

N

∑
x,y∈X×X

p(x|y) log q(x|y) + log(N)

=
1

N

∑
y∈X

∑
x∈X

p(x|y) log q(x|y) + log(N)

= −H (p(x|y), q(x|y)) + log(N)

Therefore, maximizing the cross-entropy between the two distributions maximizes the mutual
information between samples.

On the hand, Variational Bayesian (VB) methods are fundamental in approximating
intractable posterior distributions p(z | x) with tractable variational distributions qϕ(z). This
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approximation is achieved by minimizing the Kullback-Leibler (KL) divergence between the
variational distribution and the true posterior:

KL(qϕ(z)∥p(z | x)) = Eqϕ(z)

[
log

qϕ(z)

p(z | x)

]
. (F.10)

The optimization objective, known as the Evidence Lower Bound (ELBO), is given by:

ELBO = Eqϕ(z) [log p(x, z)]− Eqϕ(z) [log qϕ(z)] . (F.11)

Maximizing the ELBO is equivalent to minimizing the KL divergence, thereby ensuring that
qϕ(z) closely approximates p(z | x) [402].

VB can be framed within the I-Con framework by making specific mappings between the
variables and distributions. Let i correspond to the data point x, and j correspond to the
latent variable z. We can set the supervisory distribution pθ(z | x) to be the true posterior
p(z | x). This allow us to define the learned distribution qϕ(z | x) to be independent of x, i.e.,
qϕ(z | x) = qϕ(z).

Under these settings, the I-Con loss simplifies to:

L(ϕ) =
∫
x∈X

KL (p(z | x)∥qϕ(z)) dx = Ep(x) [KL(p(z | x)∥qϕ(z))] . (F.12)

Interpretation

• Global Approximation: In VB, qϕ(z) serves as a global approximation to the posterior
p(z | x) across all data points x. Similarly, in I-Con, when qϕ(j | i) = qϕ(j), the learned
distribution provides a uniform approximation across all i.

• Variational Alignment: Both frameworks employ variational techniques to align a
tractable distribution qϕ with an intractable or supervisory distribution p. This align-
ment ensures that the learned representations capture essential information from the
target distribution.

• Framework Generalization: I-Con generalizes VB by allowing qϕ(j | i) to depend on i,
enabling more flexible and data-specific alignments. VB is recovered as a special case
where the learned distribution is uniform across all data points.

F.6 Why do we need to unify representation learners?

I-con not only provides a deeper understanding of these methods but also opens up the
possibility of creating new methods by mixing and matching components. We explicitly use
this property to discover new improvements to both clustering and representation learners.
In short, I-Con acts like a periodic table of machine learning losses. With this periodic table
we can more clearly see the implicit assumptions of each method by breaking down modern
ML losses into more simple components: pairwise conditional distributions p and q.

One particular example of how this opens new possibilities is with our generalized
debiasing operation. Through our experiments we show adding a slight constant linkage
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between datapoints improves both stability and performance across clustering and feature
learning. Unlike prior art, which only applies to specific feature learners, our debiasers can
improve clusterers, feature learners, spectral graph methods, and dimensionality reducers.

Finally it allows us to discover novel theoretical connections by compositionally exploring
the space, and considering limiting conditions. We use I-Con to help derive a novel theoretical
equivalences between K-Means and contrastive learning, and between MDS, PCA, and SNE.
Transferring ideas between methods is standard in research, but in our view it becomes much
simpler to do this if you know methods are equivalent. Previously, it might not be clear how
exactly to translate an insight like changing Gaussian distributions to Cauchy distributions
in the upgrade from SNE to T-SNE has any effect on clustering or representation learning. In
I-Con it becomes clear to see that similarly softening clustering and representation learning
distributions can improve performance and debias representations.

F.7 How to choose neighborhood distributions for your
problem

Parameterization of Learning Signal

• Parametric: (Learn a network to transform a data points to representations). Use
a parametric method to quickly represent new datapoints without retraining. Use a
parametric method if there is enough “features” in the underlying data to properly learn
a representation. Use this option with datasets with sparse supervisory signal in order
to share learning signal through network parameters.

• Nonparametric: (Learn one representation per data point). Use a nonparametric
method if datapoints are abstract and don’t contain natural features that are useful for
mapping. Use this option to better optimize the loss of each individual datapoint. Do
not use this in sparse supervisory signal regimes (Like augmentation based contrastive
learning), as there are not enough links to resolve each individual embedding.

Choice of supervisory signal

• Gaussians on distances in the input space: though this is a common choice and
underlies methods like k-means, with enough data it is almost always better to use
k-neighbor distributions as they better capture local topology of data. This is the same
intuition that is used to justify spectral clustering over k-means.

• K-neighbor graphs distributions: If your data can be naturally put into a graph
instead of just considering Gaussians on the input space we suggest it. This allows
the algorithm to adapt local neighborhoods to the data, as opposed to considering all
points neighborhoods equally shaped and sized. This better aligns with the manifold
hypothesis.

• Contrastive augmentations: When possible, add contrastive augmentations to your
graph - this will improve performance in cases where quantities of interest (like an
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image class) are guaranteed to be shared between augmentations.

• General kernel smoothing techniques: Use random walks to improve the opti-
mization quality. It connects more points together and in some cases mirrors geodesic
distance on the manifold [403].

• Debiasing: Use this if you think negative pairs actually have a small chance of aligning
positively. For a small number of classes this parameter scales like the inverse of the
number of classes. You can also use this to improve stability of the optimization.

Choice of representation:

Any conditional distribution on representations can be used, so consider what kind of structure
you want to learn, tree, vector, cluster, etc. And choose the distribution to be simple and
meaningful for that representation.

• Discrete: Use discrete cluster-based representations if interpretability and discrete
structure are important

• Continuous Vector: Use a vector representation if generic downstream performance
is a concern as this is a bit easier to optimize than discrete variants.

F.8 Comparing I-Con, MLE, and the KL Divergence

There are many connections between KL divergence and maximum likelihood estimation. We
highlight the differences between a standard MLE approach and I-Con. In short, although
I-Con has a maximum likelihood interpretation, its specific functional form allows it to unify
both unsupervised and supervised methods in a way that elucidates the key structures that
are important for deriving new representation learning losses. This is in contrast to the
commonly known connection between MLE and KL divergence minimization, which does not
focus on pairwise connections between datapoints and does not provide as much insight for
representation learners. To see this we note that the conventional connection between MLE
and KL minimization is as follows:

θMLE = argmin
θ
DKL(P̂ ||Qθ),

where the empirical distribution, P̂ , is defined as:

P̂ (x) =
1

N

N∑
i=1

δ(x− xi),

where δ(x−xi) is the Dirac delta function. The classical KL minimization fits a parameterized
model family to an empirical distribution. In contrast the I-Con equation:

L(θ, ϕ) =
∫
i∈X

DKL (pθ(·|i)||qϕ(·|i))

233



Operates on conditional distributions and captures an “average” KL divergence instead of
a single KL divergence. Secondly, I-Con explicitly involves a computation over neighboring
datapoints which does not appear in the aforementioned equation. This decomposition of
methods into their actions on their neighborhoods makes many methods simpler to understand,
and makes modifications of these methods easier to transfer between domains. It also makes
it possible to apply this theory to unsupervised problems where empirical supervisory data
does not exist. Furthermore some methods, like DINO, do not share the exact functional
form of I-Con, and suffer from various difficulties like collapse which need to be handled with
specific regularizers. This shows that I-Con is not just a catchall reformulation of MLE, but
is capturing a specific functional form shared by several popular learners.

F.9 On I-Con’s Hyperparameters

One important way that I-Con removes hyperparameters from existing works is that it does
not rely on things like entropy penalties, activation normalization, activation sharpening, or
EMA stabilization to avoid collapse. The loss is self-balancing in this regard as any way that
it can improve the learned distribution to better match the target distribution is “fair game”.
This allows one to generalize certain aspects of existing losses like InfoNCE. In I-Con info NCE
looks like fixed-width Gaussian kernels mediating similarity between representation vectors.
In I-Con it’s trivial to generalize these Gaussians to have adaptive and learned covariances
for example. This allows the network to select its own level of certainty in representation
learning. If you did this naively, you would need to ensure the loss function doesn’t cheat by
making everything less certain.

Nevertheless I-Con defines a space of methods depending on the choice of p and q. The
choice of these two distributions becomes the main source of hyperparameters we explore.
In particular our experiments change the structure of the supervisory signal (often p). For
example, in a clustering experiment changing p from “Gaussians with respect to distance” to
“graph adjacency” transforms K-Means into Spectral clustering. It’s important to note that
K-means has benefits over Spectral clustering in certain circumstances and vice-versa, and
there’s not necessarily a singular “right” choice for p in every problem. Like many things in
ML, the different supervisory distributions provide different inductive biases and should be
chosen thoughtfully. We find that this design space makes it easier to build better performing
supervisory signals for specific important problems like unsupervised image classification on
ImageNet and others.
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