

Evaluating the health risks from exposure to *Legionella* in reclaimed water aerosols

11th IWA International Conference on Water Reclamation and Reuse 7/26/17

Kerry A. Hamilton, Ph.D.¹ Mark T. Hamilton² Willam Johnson³ Patrick Jjemba³ Mark LeChevallier³ Charles N. Haas, Ph.D.¹

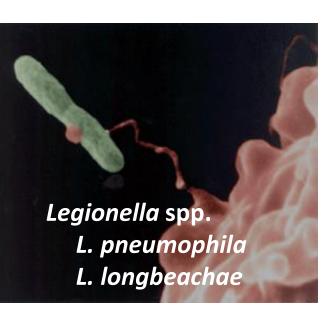
¹Department of Civil, Architectural, and Environmental Engineering, Drexel University, Philadelphia, PA ²Yale University, New Haven, CT ³American Water Research Laboratory, Delran, NJ

WRF-12-05 Development of a risk management strategy for *Legionella* in recycled water systems

Project team: Mark LeChevallier Zia Bukhari Patrick Jjemba William Johnson Charles N. Haas Kerry Hamilton

Reclaimed water

- Wastewater reused for beneficial purpose with treatment
- Level of treatment depends on the application



USEPA, 2012

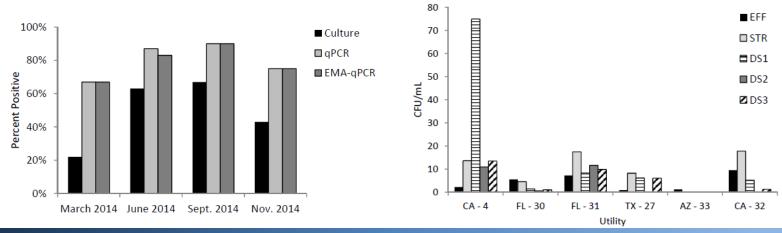
Legionella in engineered water systems

- Most of focus on GI pathogens, what about opportunistic pathogens?
 - Inhalation exposure

Acanthamoeba spp.

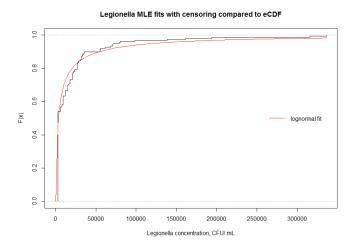
CDC, Kenyon College, Harb et al., 2000, Potera 2012

Study design & utility characteristics


- Survey of 19 United States water utilities during a "snapshot" using a culture-based assay
- Six utilities were followed up quarterly using 3 pathogen detection methods (70% average recovery)

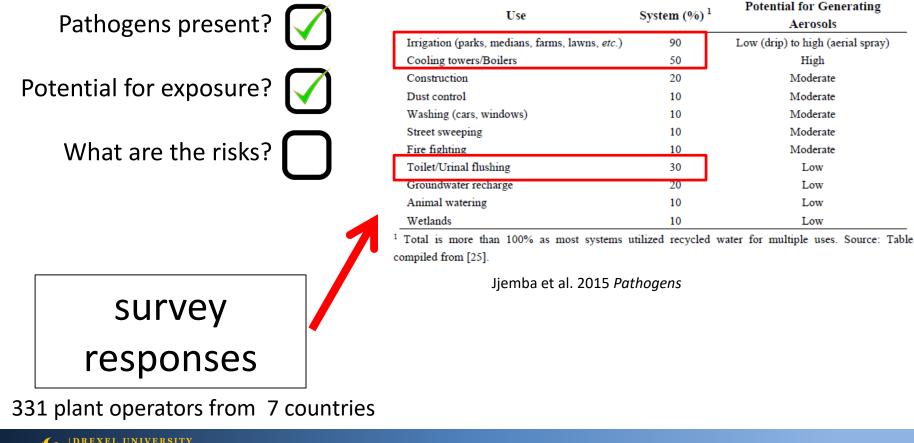
Utility	Treatment Process	Production Capacity	Disinfectant	Storage	Length of Distribution	Average Residence Time (hours)		
		(MGD)			System (miles)	DS1	DS2	DS3
TX - 27	Activated Sludge, tertiary sand filtration	75	Chlorine	Closed	16	24	55	127
FL-30	Secondary clarification, sand filtration	7	Chlorine	Open	36	0.25	10	29
CA - 4	Trickling Filter with tertiary sand filtration	0.24	Chlorine	Open	0.3	2	4	5
FL-31	Activated Sludge, cloth filtration	14	Chlorine	Closed	10	14	17	19
CA - 32	Activated Sludge, tertiary anthracite filtration	40	Chloramine	Closed	100	1	24	48
AZ - 33	Activated Sludge, BNR, tertiary anthracite filtration	10	Chlorine	Closed	130	5	10	24

Occurrence of Legionella in reclaimed water


Method	n	<i>Legionella</i> spp. (#/mL) in positive samples [Mean ± SD (range)]	% Positive
Culture	153	25 ± 19 (3 - 80)	48
EMA-qPCR	115	307 ± 336 (2 - 1,438)	89
qPCR	115	1,014 ± 683 (1 - 2,550)	90

Occurrence of *L. pneumophila* in reclaimed water

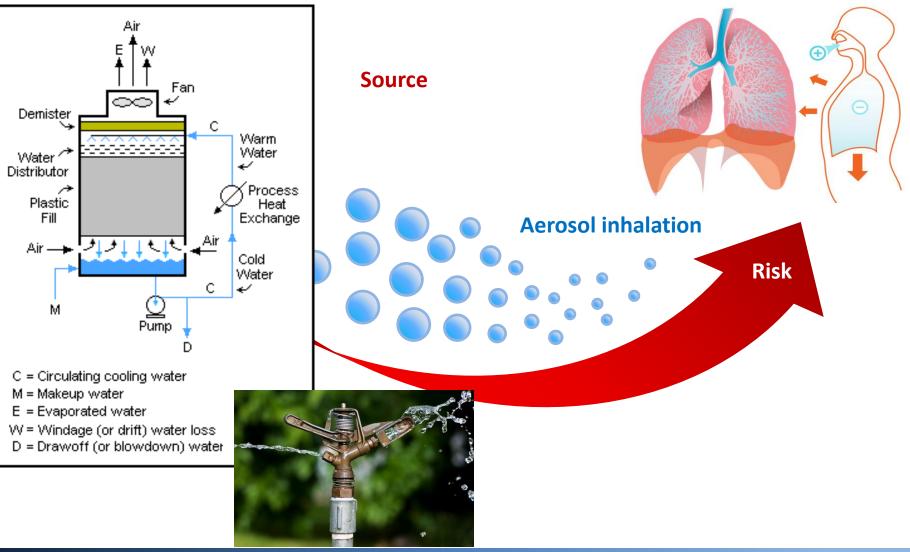
- Legionella species identified by serotyping cultured colonies and DNA sequencing qPCR amplification products
 - 16 species identified
 - 96% LP by culture, 52% LP by qPCR


Species	Pathogenic
L. pneumophila	Yes
L. oakridgensis	Yes
L. moravica	No
L. longbeachae	Yes
L. hackeliae	Yes
L. parisiensis	Yes
L. steigerwaltii	Yes
L. anisa	Yes
L. tucsonensis	Yes
L.waltersii	Yes
L. wadsworthii	Yes
L. feeleii	Yes
L. spiritensis	Yes
L.cincinatiensis	Yes
L. lansingensis	Yes
L. jordansis	Yes

A need to assess the health risks from opportunistic pathogens *L. pneumophila* in reclaimed water

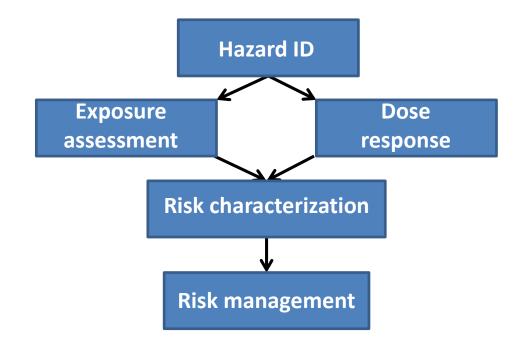
generate aerosols.

Table 2. Typical uses of recycled water for 10 systems in the US and related potential to

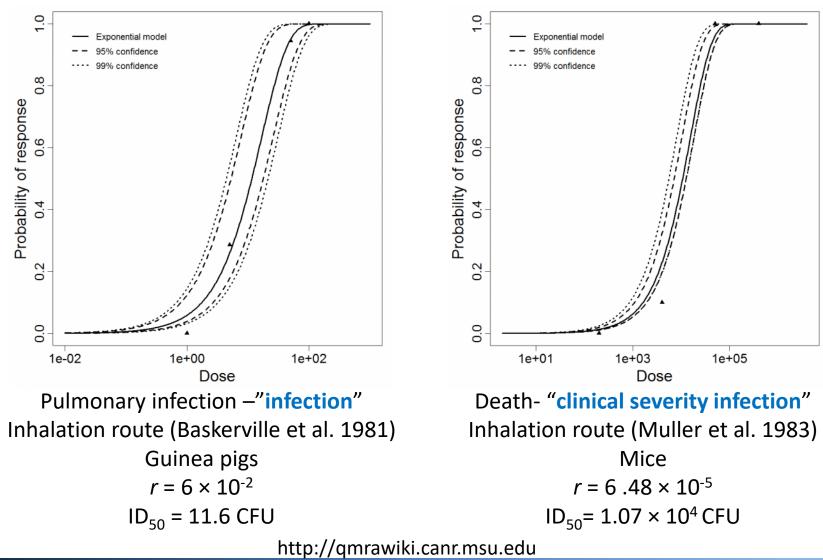

College of Engineering

Sprinklers identified in survey

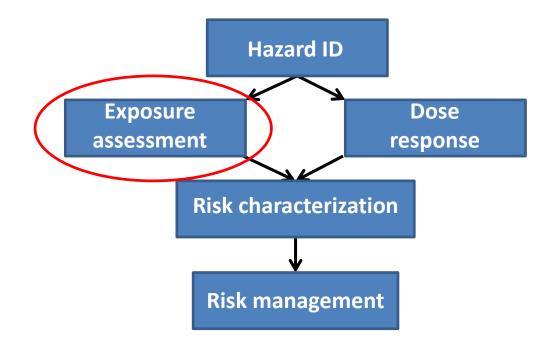
Irrigation sprayer	Device height (m)	Recommended pressure range (kPa)	Flow rate (L/s)	Spray radius (m)	Max stream height (m)	Distance to max spray height (m)
Rainbird Eagle 900	0.09	410-690	1.35-3.60	19.2-29.6	6.1	18.3-24.4
Rainbird Eagle 700	0.07- 0.31	410-690	1.03-2.76	10.7-22.9	5.2	8.2-19.8
Toro 800 series	0.15-0.432	200-350	0.03-0.63	9.7-15.2	NA	NA
Hunter Pro- Spray (spray head)	0.05-0.3	100-700	0.01-0.36	2.6-5.8	NA	2.2-4.5
Hunter PGP Rotors 4"	0.10 (total device height 0.19)	206-482	0.032-0.91	6.7-15.9	2.1-4.0	6.7-12.2



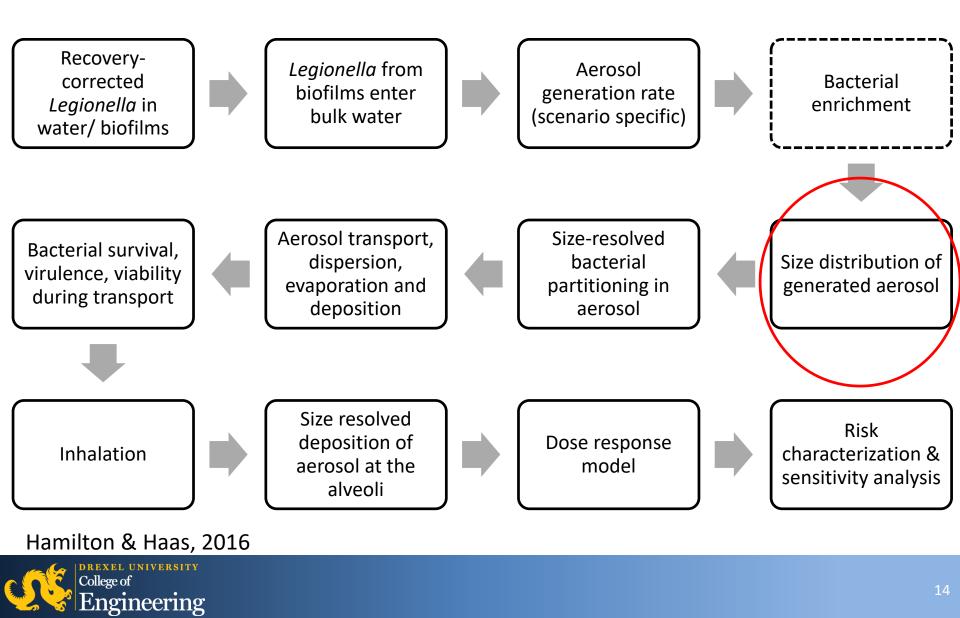
Exposure scenarios



QMRA framework



L. pneumophila dose response model: subclinical infection vs. clinical severity infection (CSI)- Armstrong & Haas 2007



QMRA framework

Legionella risk assessment process

Exposure models for spray irrigation & recirculating non-contact cooling towers: emission rate

$$Q_{Leg} = CL_{egFE}$$

 Q_{Leg} = emission rate of *L. pneumophila* [#/ min] C_{Leg} = Concentration of *L. pneumophila* in reclaimed water [#/L] F= flow rate[L/s]

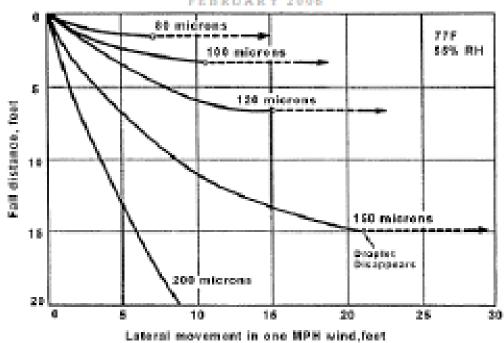
E= aerosolization efficiency= fraction of sprayed reclaimed water that leaves the immediate vicinity of system as aerosols (0<E≤1)
CT Normal operating conditions: 0.001-0.005 % drift loss (ASHRAE)
CT "Bad" operating conditions: 0.1-0.01 % (Lucas et al. 2012)
Sprinkler: 0.5 – 1.4 % (Kohl et al. 1974)

Exposure models for spray irrigation & recirculating non-contact cooling towers: GP USEPA, 1982, Peterson & Lighthart 1977 $Dose(x, y, z) = \frac{Q_{Leg}It}{2\Pi\mu\sigma_{\nu}\sigma_{z}} \exp\left|\left(\frac{-y}{2\sigma_{\nu}}\right)^{2}\right| \left\{ exp\left[\frac{-(z-H)^{2}}{2\sigma_{z}^{2}}\right] + exp\left[\frac{-(z+H)^{2}}{2\sigma_{z}^{2}}\right] \right\} \sum_{i=1}^{n} q_{i,s} DE_{i} exp^{\frac{-\lambda_{s}x}{\mu}}$

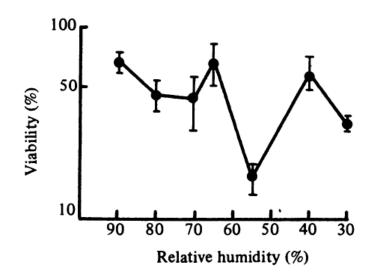
- D_{Leg} = Dose of Legionella at x, y, and z meters downwind from the source
- *x* = distance downwind (m)
- y = horizontal distance perpendicular to wind (m)
- z = downwind receptor breathing zone height (1.5 m)
- H = source height (m)
- μ = wind velocity (m/s)
- σ_{y} = horizontal dispersion coefficient (m)
- σ_z = vertical dispersion coefficient (m)

- λ = Decay rate (s⁻¹) for state s
- s = in aqueous aerosol or evaporated
- I= inhalation rate (m³ / min);
- t= is the exposure duration (min)
- $q_{i,s}$ = mass-weighted proportion of diameter 1

through 10 μ m in the evaporated or aqueous aerosol state *s* (assumed to be uniform fractions)

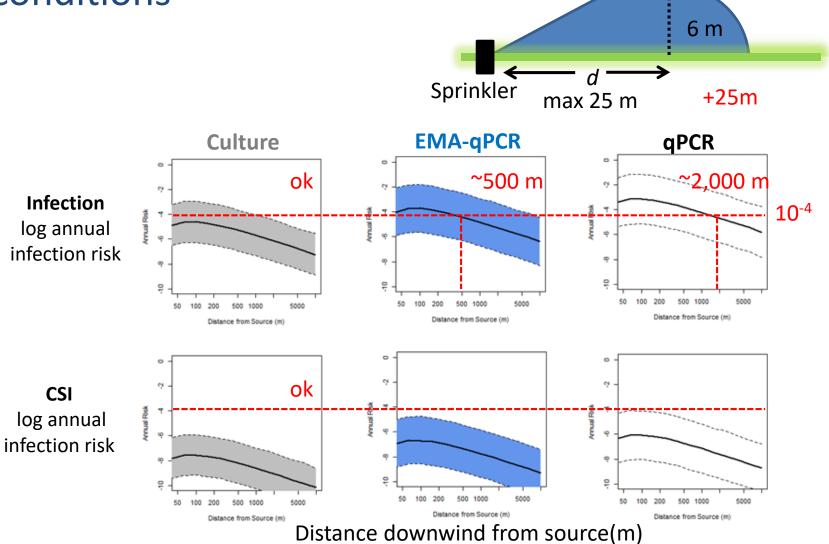

Aerosol size assumptions: 100 and 200 µm fractions

Technical Background Document: Microbial Risk Assessment and Fate and Transport Modeling of Aerosolized Microorganisms at Wastewater Land Application Facilities in Idaho

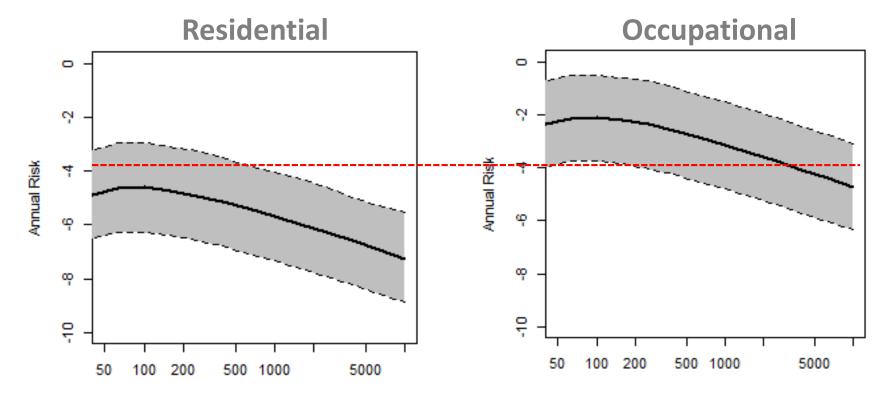


Department of Environmental Quality February 2006

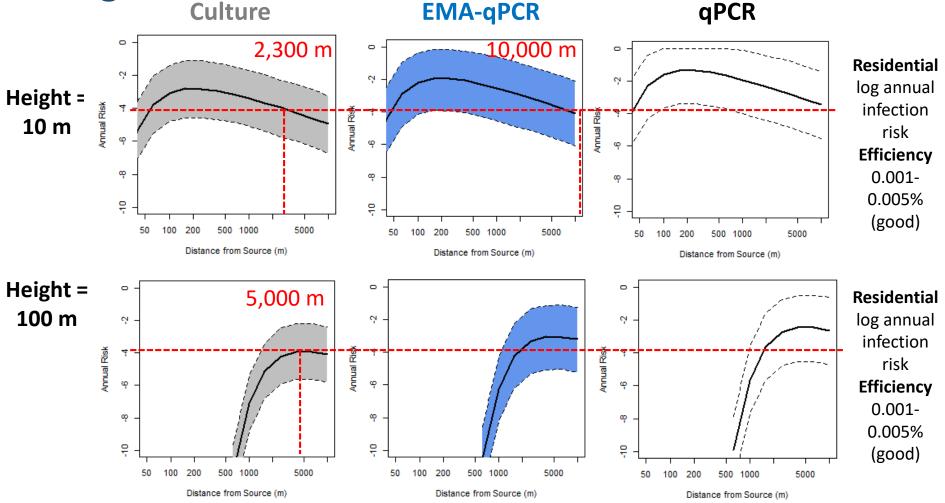
Sprinkler	0.0138, 0.0413	Hardy et al. 2006		
(Rainbird 30 5/32)		(Idaho DEQ)		
Cooling tower	0.0459, 6.03×10 ⁻⁴	Peterson and Lighthart		
		1977		


Decay assumptions

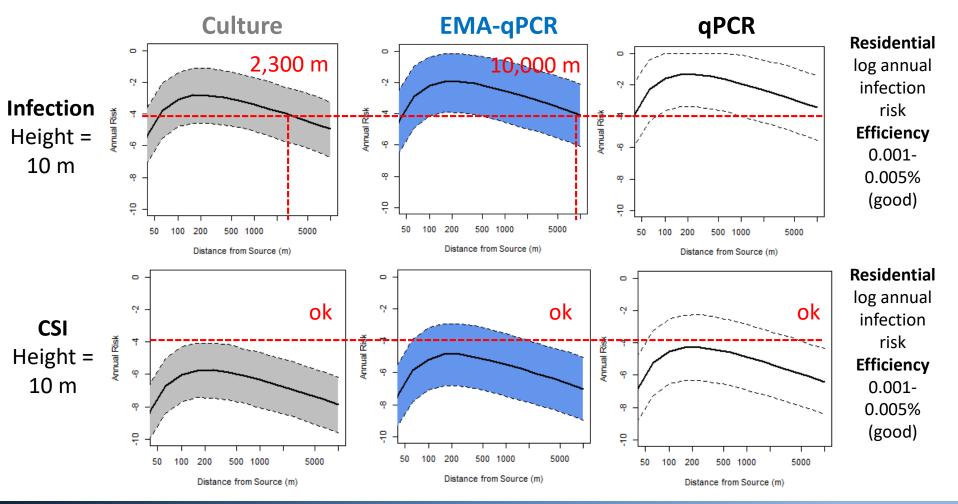
Conditions	Decay (s ⁻¹)	Reference
RH=65%	8.40×10 ⁻⁵ - 2.38×10 ⁻⁴	Hambleton et al. 1983
RH= 80%	1.82×10 ⁻⁴ - 3.09×10 ⁻⁴	Berendt 1981 , Dennis 1988
RH=90%	7.88×10 ⁻⁵ - 4.09×10 ⁻⁴	Hambleton et al 1983, Dennis and Lee 1988
Evaporated (t_1 =up to 30s, t_2 = t- 30s if t > 30s)	0.125 3.10×10 ⁻⁴	Katz and Hammel 1987



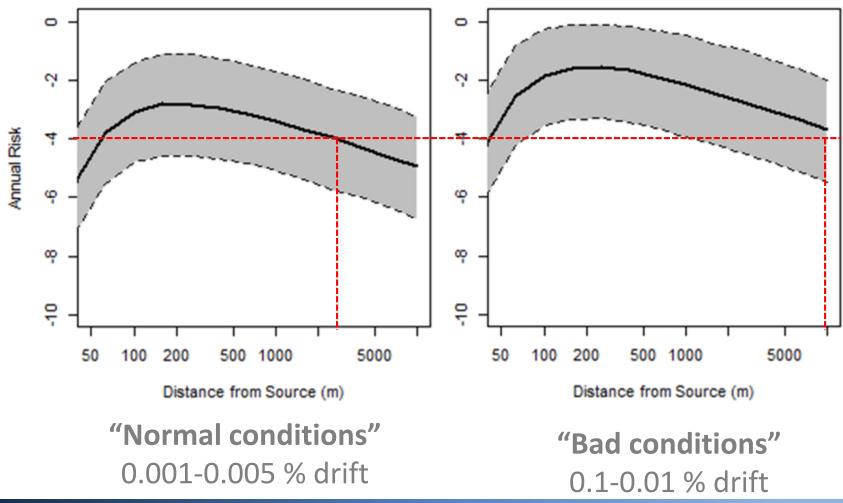
Sprinkler annual risks modeled for varying conditions


Sprinkler annual risks and the impact of the population at risk

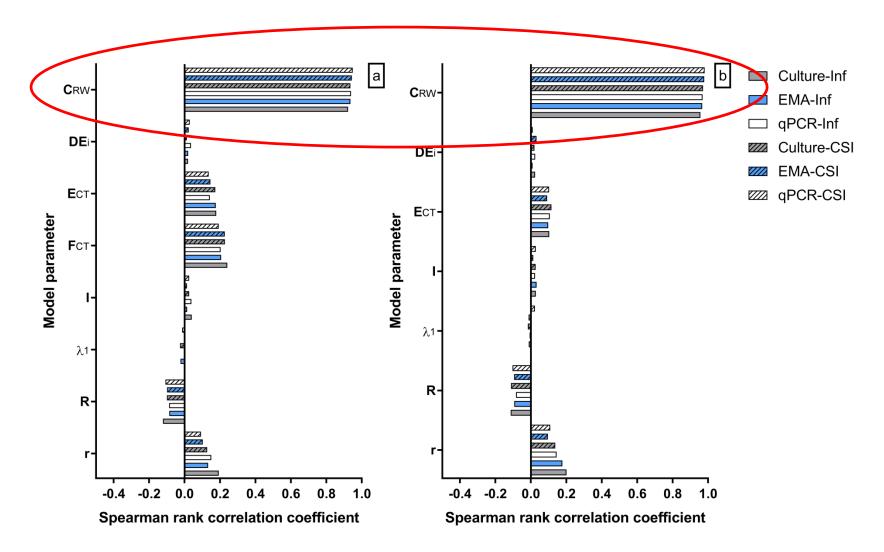
Distance downwind from source(m)


Cooling tower annual risks and impact of stack height

Stack height shift peak downwind- very large setback distances would be needed



Cooling tower annual risks and impact of dose response (stack height = 10 m)

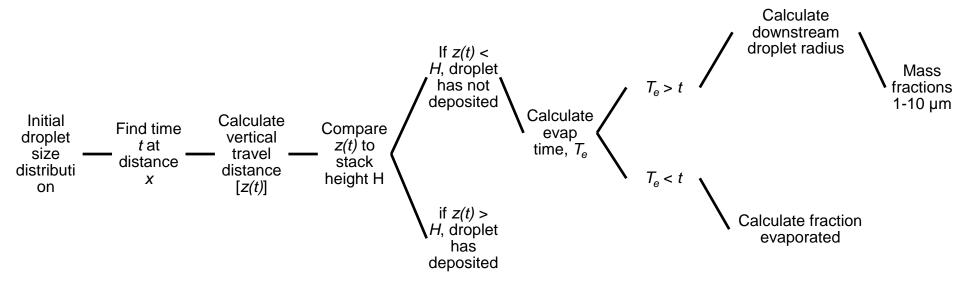


Cooling tower annual risks and impact of cooling tower efficiency

Sensitivity analysis

Conclusions

- Legionella risks are non-trivial at potentially large distances for spray irrigation and sprinklers
- Risks and setback distance chosen varies depending on:
 - Dose response model chosen
 - Population at risk
 - Detection method
 - Operating conditions (drift eliminator performance)
 - Stack height (CT)
 - meteorological conditions
- Concentration of *Legionella* most influential model parameter in all models
- Other management practices can be applied to reduce setback distances needed



Limitations and data gaps

- No solar inactivation a data gap
- Does not account for time-activity patterns
- Protection of *Legionella* due to the presence of organic debris or algae is not considered- no regrowth up to point of use
- Impacts of aerosol dynamics including bubble burst, break up or agglomeration of aerosols, film collapse, and shear forces on Legionella are not considered
- No topographic effects
- No plume rise
- Need to incorporate biofilm, algae, organic debris impacts
- Fate of bacteria in individual aerosols is not tracked
- Enrichment not considered
- No blending with any other water source prior to use

Next steps: Aerosol size model- the "q"

Thank you

WateReuse Research Foundation Grant WRF-12-05

